
Macsyma Introduction

Steps for PDE solving by
Macsyma

• Obtaining solutions with PDEase2D is a simple four-
step process:

Create a mathematical model of the system.

Translate the mathematical model into a PDEase2D
problem descriptor file.

Open MFE (Macsyma Front End) to run PDEase2D to
produce a solution.

Review, animate, and/or print the solution produced
by PDEase2D.

MFE and PDEase2D

• You can use MFE to load the .pde problem descriptor file into a PDEase2D
Interaction section. Or you can Edit-Insert a new PDEase Interaction section
and enter the problem description. You can see over 140 sample .pde files and
MFE notebooks containing problems in the PDEase2D₩demos directory.

• See the Macsyma and PDEase2D Front End Reference for more information
about MFE.

• You can execute the PDEase2D commands by pressing (the PDEase2D button).

• PDEase2D uses MFE to make graphics. You can use the graphical and text
features of MFE to examine any plot, change its attributes, make annotations,
animate the plot, or print it. You can save the note with the graphics to review
later.

• You can use the P button to pause the calculation. The P button then turns into
an R for Resume calculation. You can erase the PDEase2D Output sections with
the Eraser button

Language-Based Problem
Specification

You can prepare a PDEase2D command script using
any standard ASCII text editor (DOS EDIT.COM,
Windows Notebook, or SUN OpenWindows TEXTEDIT).

You can then present PDEase2D with a simple, natural,
and easy-to-learn language-based specification
system.

Poisson's equation appears as div(grad(T)) + h=0, its
normal mathematical form, and polynomials appear as
A*u^2+B*u*v+C*v^2.

Powerful Galerkin Finite Element Spatial Dependence
Solver

Space discretization

• Finite element modeling has been the preferred method for converting the
spatial components of complex sets of continuous partial differential equations
(with well defined boundary values) to a set of discrete nodal equations for
numerical solving. In this method the spatial area of interest is gridded into
small patches called finite elements over which the variables are represented by
simple polynomials. PDEase2D uses the Galerkin Finite Element Method of
weighted residuals with quadratic basis to convert continuous partial differential
equations into discrete nodal equations.

• Fully Automated Adaptive Grid Refinement
One difficult decision to make, when accuracy is required, in implementing the
finite element method, is how to divide the area of interest into patches. Small
patches require excessive computer time and memory. PDEase2D solves this
problem for the user by starting with a coarse grid of triangular patches (the
most universal patch geometry that can be selected) and then using an iterative
process to refine the grid to suit the problem. After subdividing, recalculation is
fast because of the good starting estimate provided by the previous iteration. In
this way PDEase2D uses fine gridding only in those areas where sharp
curvatures and tight geometries exist, providing near optimum speed and
memory utilization.

Powerful Evolution Time
Dependence Solver

• Evolution solvers have been the preferred
method of breaking continuos time
dependent boundary/initial value problems
into discrete time slices which can then be
solved by the Galerkin Finite Element Method
of weighted residuals.

• PDEase2D uses a proprietary self adjusting
evolution solver for time stepped problems.
This method insures highly accurate results
capable of following extremely rapid changes
in time.

Initial and Boundary Conditions

• Fully Automated Time Step Refinement
• The PDEase2D evolution solver automatically and continuously adjusts its time

step interval to reduce the time interval when PDEase2D encounters a region of
rapid change and to increase the time step when PDEase2D encounters a region
of slow change. This automatic refining of the time step interval relieves the user
of the responsibility of predetermining a time step and provides maximum
accuracy for a minimum number of time steps.

• Support for Both Value and Natural Boundary Conditions
• PDEase2D supports both value and natural boundary conditions. PDEase2D

correctly interprets the natural boundary condition for equations written as the
divergence of a vector, that is DIV(D)-=0, (the normal form for most heat and
electrostatic problems) as the dot product of the outward directed normal and the
vector D. PDEase2D correctly interprets the natural boundary condition for
equations written as the curl of a vector, that is CURL(H)-J=0

• Automatic Handling of Internal Boundary Conditions in Multi-Region Problems
• When solving multi-region problems, the finite element method used by

PDEase2D guarantees that when problems are expressed in either divergence
form or curl form that at the region interfaces both the normal component of flux
density and the tangential component of the field intensity are continuous.

Other features

• Eigenvalue "Modal" Analysis
• Using the "subspace iteration" method to reduce the number of degrees of

freedom, PDEase2D, when requested, calculates and lists a user selected
number of the smallest eigenvalues of specified linear systems.

• Non-Analytic Data Import and Export
• PDEase2D's unique table function allows it to import and export non-analytic

(numerical) data. This feature can be used to import numerical data from
programs such as experimental data gathering programs or to export data for
special post processing.

• Automatic or User-Controlled Solution Flow
• Most linear and non-linear problems can be solved automatically by PDEase2D,

using its built-in default selectors to control the internal flow of the solutions.
For those especially difficult problems which do not converge well with the
built-in defaults, any of the over twenty built-in default selectors normally used
by PDEase2D to control the internal flow of the solution can be overridden by
the user to improve problem convergence.

Continued

• Graphic Output Viewing and Recall
• PDEase2D produces a series of output graphic as MFE

Graphics section. You can view them by scrolling through the
notebook, print them. Or, if you used the animate directive,
make an animation of any plot.

• Hardcopy using Windows
• You can use the Windows printer as its hardcopy device by printing

notebook sections from MFE.

• Graphics with the Macsyma Front End
• You can animate any graphical output using MFE's powerful animation

facilities.

• Data Import of Region Geometries and Boundary Conditions in DXF
Format

Macsyma Programs

• Diffusion

• Macsyma demo

{Diffuse.pde
In this example, we have recast a 1D initial-value problem as a
2D boundary-value problem, with the scaled time variable
represented by "Y". Notice that this technique requires gridding
and simultaneous solution over the entire time-space domain.
For the true initial-value treatment of this problem in 2 space
dimensions, see DIFFUSET.PDE.

This problem considers the thermally driven diffusion of a
dopant into a solid from a constant source. Parameters have
been chosen to be those typically encountered in semiconduct
diffusion.
surface concentration = 1.8e20 atoms/cm**2
diffusion coefficient = 3.0e-15 cm**2/sec

The boundary condition natural(u) = 0 chosen for all distance at
time=1 and for all time at distance=1 implies that these
boundaries are sufficiently remote to have no effect on the
process. The analytic solution for this problem (the
complementary error function) is compared with the PDEase2
solution.
A "gridding feature" allows us to short-cut several iterations of
grid refinement by focussing the gridder on the area of interest. }

Title
"Constant Surface Source Diffusion (Pseudo-2D)“

Select
gridlimit = 15
alias(y) = "time"
alias(x) = "distance“

Variables
u

Definitions
concs = 1.8e8 {surface concentration atom/micron**3}
D = 1.1e-2 {diffusion coefficient micron**2/hr}
conc = concs*u
cexact = concs*erfc(x/(2*sqrt(D*y))) {analytic solution}
uexact = erfc(x/(2*sqrt(D*y)))

Initial values
u = 0

Equations
dx(D*dx(u)) - dy(u) = 0

Boundaries
region 1
start(0,0)
value(u) = 0.0001
line to (1,0)
natural(u) = 0
line to (1,1)
natural(u) = 0
line to (0,1)
value(u) = 1
line finish

feature
{ a "Gridding Feature" for gridding control }
start(0.01,0) line to (0.01,0.01) to (0,0.01)

Monitors
contour(u)

Plots
contour(u) as "C/Cs"
contour(conc)
contour(conc) zoom(0,0,0.2,0.2)
contour(u-uexact) as "Relative Error"
contour(u-uexact) zoom(0.05,0.05,0.9,0.9) as
"Relative Error"

elevation(conc) from (0,.2) to (.4,.2)
elevation(u-uexact) from (0,.2) to (.4,.2)

as "Relative Error"
surface(u) interactive as "C/Cs"

End

{ Macsdemo.pde }

Title
"Macsyma Equation Test"

Select
macsyma
errlim = 0.1

Coordinates
cartesian(x,y)

Definitions
b = 1.0

Variables
u

Initial values
u = 1-(x-0.5)**2-(y-0.5)**2

Equations
'DIFF(b*'DIFF(u,x,1),x,1)
+ 'DIFF(b*'DIFF(u,y),y)
+ 4*b = 0;

Boundaries
region 1

start(0,0)
value(u)=0
line to (1,0)
to (1,0.25)
to (0.5,0.47)
to (0.25,0.47)
to (0.25,0.50)
to (0.5,0.50)
to (1,0.75)
to (1,1)
to (0,1)
finish

Plots
surface(u)

End

	Macsyma Introduction
	Steps for PDE solving by Macsyma
	MFE and PDEase2D
	Language-Based Problem Specification�
	Space discretization
	Powerful Evolution Time Dependence Solver
	Initial and Boundary Conditions
	Other features
	Continued
	Macsyma Programs
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	슬라이드 번호 24
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	슬라이드 번호 28

