
Macsyma Introduction



Steps for PDE solving by 
Macsyma

• Obtaining solutions with PDEase2D is a simple four-
step process:

Create a mathematical model of the system.

Translate the mathematical model into a PDEase2D 
problem descriptor file.

Open MFE (Macsyma Front End) to run PDEase2D to 
produce a solution.

Review, animate, and/or print the solution produced 
by PDEase2D.



MFE and PDEase2D

• You can use MFE to load the .pde problem descriptor file into a PDEase2D 
Interaction section. Or you can Edit-Insert a new PDEase Interaction section 
and enter the problem description. You can see over 140 sample .pde files and 
MFE notebooks containing problems in the PDEase2D₩demos directory.

• See the Macsyma and PDEase2D Front End Reference for more information 
about MFE.

• You can execute the PDEase2D commands by pressing  (the PDEase2D button).

• PDEase2D uses MFE to make graphics. You can use the graphical and text 
features of MFE to examine any plot, change its attributes, make annotations, 
animate the plot, or print it. You can save the note with the graphics to review 
later.

• You can use the P button to pause the calculation. The P button then turns into 
an R for Resume calculation. You can erase the PDEase2D Output sections with 
the Eraser button



Language-Based Problem 
Specification

You can prepare a PDEase2D command script using 
any standard ASCII text editor (DOS EDIT.COM, 
Windows Notebook, or SUN OpenWindows TEXTEDIT). 

You can then present PDEase2D with a simple, natural, 
and easy-to-learn language-based specification 
system. 

Poisson's equation appears as div(grad(T)) + h=0, its 
normal mathematical form, and polynomials appear as 
A*u^2+B*u*v+C*v^2. 

Powerful Galerkin Finite Element Spatial Dependence 
Solver



Space discretization

• Finite element modeling has been the preferred method for converting the 
spatial components of complex sets of continuous partial differential equations 
(with well defined boundary values) to a set of discrete nodal equations for 
numerical solving. In this method the spatial area of interest is gridded into 
small patches called finite elements over which the variables are represented by 
simple polynomials. PDEase2D uses the Galerkin Finite Element Method of 
weighted residuals with quadratic basis to convert continuous partial differential 
equations into discrete nodal equations. 

• Fully Automated Adaptive Grid Refinement
One difficult decision to make, when accuracy is required, in implementing the 
finite element method, is how to divide the area of interest into patches. Small 
patches require excessive computer time and memory. PDEase2D solves this 
problem for the user by starting with a coarse grid of triangular patches (the 
most universal patch geometry that can be selected) and then using an iterative 
process to refine the grid to suit the problem. After subdividing, recalculation is 
fast because of the good starting estimate provided by the previous iteration. In 
this way PDEase2D uses fine gridding only in those areas where sharp 
curvatures and tight geometries exist, providing near optimum speed and 
memory utilization. 



Powerful Evolution Time 
Dependence Solver

• Evolution solvers have been the preferred 
method of breaking continuos time 
dependent boundary/initial value problems 
into discrete time slices which can then be 
solved by the Galerkin Finite Element Method 
of weighted residuals.

• PDEase2D uses a proprietary self adjusting 
evolution solver for time stepped problems. 
This method insures highly accurate results 
capable of following extremely rapid changes 
in time.



Initial and Boundary Conditions

• Fully Automated Time Step Refinement
• The PDEase2D evolution solver automatically and continuously adjusts its time 

step interval to reduce the time interval when PDEase2D encounters a region of 
rapid change and to increase the time step when PDEase2D encounters a region 
of slow change. This automatic refining of the time step interval relieves the user 
of the responsibility of predetermining a time step and provides maximum 
accuracy for a minimum number of time steps.

• Support for Both Value and Natural Boundary Conditions
• PDEase2D supports both value and natural boundary conditions. PDEase2D 

correctly interprets the natural boundary condition for equations written as the 
divergence of a vector, that is DIV(D)-=0, (the normal form for most heat and 
electrostatic problems) as the dot product of the outward directed normal and the 
vector D. PDEase2D correctly interprets the natural boundary condition for 
equations written as the curl of a vector, that is CURL(H)-J=0

• Automatic Handling of Internal Boundary Conditions in Multi-Region Problems
• When solving multi-region problems, the finite element method used by 

PDEase2D guarantees that when problems  are expressed in either divergence 
form or curl form that at the region interfaces both the normal component of flux 
density and the tangential component of the field intensity are continuous.



Other features

• Eigenvalue "Modal" Analysis
• Using the "subspace iteration" method to reduce the number of degrees of 

freedom, PDEase2D, when requested, calculates and lists a user selected 
number of the smallest eigenvalues of specified linear systems.

• Non-Analytic Data Import and Export
• PDEase2D's unique table function allows it to import and export non-analytic 

(numerical) data. This feature can be used to import numerical data from 
programs such as experimental data gathering programs or to export data for 
special post processing.

• Automatic or User-Controlled Solution Flow
• Most linear and non-linear problems can be solved automatically by PDEase2D, 

using its built-in default selectors to control the internal flow of the solutions. 
For those especially difficult problems which do not converge well with the 
built-in defaults, any of the over twenty built-in default selectors normally used 
by PDEase2D to control the internal flow of the solution can be overridden by 
the user to improve problem convergence.



Continued

• Graphic Output Viewing and Recall
• PDEase2D produces a series of output graphic as MFE 

Graphics section. You can view them by scrolling through the 
notebook, print them. Or, if you used the animate directive, 
make an animation of any plot. 

• Hardcopy using Windows
• You can use the Windows printer as its hardcopy device by printing 

notebook sections from MFE.

• Graphics with the Macsyma Front End
• You can animate any graphical output using MFE's powerful animation 

facilities.

• Data Import of Region Geometries and Boundary Conditions in DXF 
Format



Macsyma Programs

• Diffusion 

• Macsyma demo



{Diffuse.pde
In this example, we have recast a 1D initial-value problem as a 
2D boundary-value problem, with the scaled time variable 
represented by "Y".  Notice that this technique requires gridding 
and  simultaneous solution over the entire time-space domain.
For the true initial-value treatment of this problem in 2 space 
dimensions, see DIFFUSET.PDE.

This problem considers the thermally driven diffusion of a 
dopant into a solid from a constant source.  Parameters have 
been chosen to be those typically encountered in semiconduct 
diffusion.
surface concentration = 1.8e20 atoms/cm**2
diffusion coefficient = 3.0e-15 cm**2/sec

The boundary condition natural(u) = 0 chosen for all distance at 
time=1 and for all time at distance=1 implies that these 
boundaries are sufficiently remote to have no effect on the 
process.      The analytic solution for this problem (the 
complementary error function) is compared with the PDEase2 
solution.
A "gridding feature" allows us to short-cut several iterations of 
grid refinement by focussing the gridder on the area of interest. }



Title
"Constant Surface Source Diffusion (Pseudo-2D)“

Select
gridlimit = 15
alias(y) = "time"
alias(x) = "distance“

Variables
u    

Definitions
concs = 1.8e8   {surface concentration atom/micron**3}
D = 1.1e-2      {diffusion coefficient micron**2/hr}
conc = concs*u
cexact = concs*erfc(x/(2*sqrt(D*y)))  {analytic solution}
uexact = erfc(x/(2*sqrt(D*y)))

Initial values
u = 0



Equations
dx(D*dx(u)) - dy(u) = 0

Boundaries
region 1
start(0,0)
value(u) = 0.0001
line to (1,0) 
natural(u) = 0
line to (1,1) 
natural(u) = 0
line to (0,1)
value(u) = 1
line finish

feature
{ a "Gridding Feature" for gridding control }
start(0.01,0) line to (0.01,0.01) to (0,0.01)



Monitors
contour(u) 

Plots
contour(u) as "C/Cs" 
contour(conc) 
contour(conc) zoom(0,0,0.2,0.2) 
contour(u-uexact) as "Relative Error" 
contour(u-uexact) zoom(0.05,0.05,0.9,0.9) as 
"Relative Error"

elevation(conc) from (0,.2) to (.4,.2)
elevation(u-uexact) from (0,.2) to (.4,.2)

as "Relative Error" 
surface(u) interactive as "C/Cs" 

End























{ Macsdemo.pde }

Title
"Macsyma Equation Test"

Select
macsyma
errlim = 0.1

Coordinates
cartesian(x,y)

Definitions
b = 1.0

Variables
u

Initial values
u = 1-(x-0.5)**2-(y-0.5)**2



Equations
'DIFF(b*'DIFF(u,x,1),x,1) 
+ 'DIFF(b*'DIFF(u,y),y) 
+ 4*b = 0;

Boundaries
region 1

start(0,0) 
value(u)=0
line to (1,0)
to (1,0.25) 
to (0.5,0.47)
to (0.25,0.47)
to (0.25,0.50)
to (0.5,0.50)
to (1,0.75)
to (1,1)
to (0,1) 
finish

Plots
surface(u)

End
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