
PDEase2D Reference Manual



The pre-defined sections and their descriptions are:

Section Type Description

Title Text title to identify the problem in output files and plots.
Select Option settings which control various optional features of PDEase2D.

Coordinates       Independent spatial variables and coordinate systems.
Variables Dependent field variables.
Definitions Definition of terms and functions which appear in the equations, constraints,       

boundary       specifications      and so forth.

Initial Values       Initial conditions in time-dependent problems.
Equations The differential equations to be solved.
Constraints Constraint equations which are imposed on the solution.
Boundaries Geometric boundaries and regions and boundary conditions.
Time Time coordinate, lower and upper limit and number of time steps in time-

dependent problems.

Monitors Plots which are displayed during the progress of the computation.
Plots Plots which are displayed upon completion of the computation.
Histories Time history of the values of one or more dependent variables at a point during 

a time- dependent problem.

End Signifies the end of the problem descriptor file.



Each section must begin with its own pre-defined (reserved) name to inform 
PDEase2D of the nature of the statements which it contains. While PDEase2D 
permits considerable flexibility in the order and number of sections used in a 
problem descriptor file, it processes a problem descriptor file from top to bottom 
and cannot make forward references. Variables can be used in a Definitions 
section provided they have been declared in a previous Variables section. 
Definitions declared in a Definitions section can be used in any subsequent 
definitions or expressions.

With the exception of the Boundaries and End sections, the use of any particular section 
in a problem descriptor file is optional. All problem descriptor files must contain at least a 
Boundaries section and an End section. 

You should use each section in an input file only once and in the order listed 
in the PDease2D.MFE template.

While PDEase2D does not require any formal structure, it is good practice to format the sections and statements 
using indentations to indicate levels in the hierarchical structure of the file as follows:

section_1

statement

statement

section_2

statement

statement

This format is easy for both the user and others to read and understand.



Example
{SIMPLE.PDE}

{*******************************************************************

This sample demonstrates the simplest application of PDEase2D to heat flow problems.

The heat flow equation is

div(K*grad(Temp)) + Source = 0.

The function

Temp = Const - x**2 - y**2

satisfies the heat equation if K is constant and  Source = 4*K.

We define a square region of material of conductivity K = 1, with a uniform heat source of 4 heat units per unit 
area. We further specify the boundary value

Temp = 1 - x**2 - y**2.

Since we know the analytic solution, we can compare the accuracy of the PDEase2D solution. 

***************************************************************}



Title
"Simple Heatflow"

Variables
Temp(range=0,1)                     {Identify "Temp" as the system 

variable with approximate range o to 1}

Definitions
K = 1 {declare and define the 

conductivity}
source = 4 {declare and define the source}
Texact = 1-x**2-y**2 {for convenience, define the y { ,

exact solution}

initial values
Temp = 1 {optional in linear steady state 

problems}

Equations
div(K*grad(Temp)) + source = 0 {define the heatflow equation}



boundaries {define the problem domain}

Region 1 {... only one region}

value(Temp)=Texact {specify Dirichlet boundary at exact solution}

start(-1,-1) {specify the starting point}
line to (1,-1) {walk the boundary}
to (1,1) 
to (-1,1) 
finish {bring boundary back to starting point}

monitors 
contour(Temp) {show the Temperature during solution}
plots {write these hardcopy files at completion}
contour(Temp
surface(Temp) 
contour(Temp-Texact) as "Error“
vector(-dx(Temp),-dy(Temp)) as "Heat Flow"

end {end of descriptor file }

• You can prepare problems for PDEase2D using PDEase2D's easy-to-learn natural language and a text editor 
to create a problem descriptor file which describes mathematically the problem to be solved. Or you can edit 
the text inside a PDEase2D command section inside a Macsyma notebook.



PDEase2D supports use of the following continuous 
functions:

Function Description

ABS(arg) Absolute value.
ARCCOS(arg)                                                Arc cosine in radians.
ARCSIN(arg)                                                 Aarc sine in radians.
ARCTAN(arg) Arc tangent in radians.
ATAN2 (arg1,arg2) Returns the angle in radians whose cosine and sine are 
proportional to arg1 and arg2. Same as ATAN(arg1/arg2), except when arg2=0.

COS(arg)
COSH(arg)COSH(arg)

ERF(arg) Error function.
ERFC(arg) Error function complement.
EXP(arg) Exponential function.

LOG (arg) Natural log; synonym for LN(arg).
LOG10(arg) Log base 10.
LN(arg) Natural log.

SIN(arg)
SINH(arg)
SQRT(arg) Square root.

TAN(arg)
TANH(arg)



PDEase2D supports use of the following piecewise 
continuous functions:

• Function Description

• USTEP(arg) The unit step function. USTEP requires one argument and 
is 0 for negative values of its argument and 1 for positive values of its 
argument.

• UPULSE(arg1,arg2) The unit pulse function. UPULSE requires two 
arguments and is 1 when argument1 is positive and argument2 is 
negative and is 0 everywhere else.

• URAMP(arg1,arg2) The unit ramp function. URAMP requires two 
arguments and is 0 when argument1 and argument 2 are both negative, 
ramps linearly from 0 to 1 when argument1 turns positive while 
argument2 is negative, and is 1 when argument1 and argument2 are 
both positive. If arg1 is greater than arg2 URAMP evaluates to 
USTEP(arg1).



The general differential operator DIFF can be use for all 
scalar differentiation operations. Specify the Select option 

"Macsyma" to use the DIFF operator. 

• PDEase2D Notation Action

• DIFF(v,var,n) nth order (partial) derivative of f(var) with respect to spatial or time 
coordinate var.

• DT(v) Partial derivative of v with respect to time

• DX(v) First order partial derivative of v with respect to coordinate x
• DXX(v) Second order partial derivative of v with respect to coordinate x 

• DY(v) First order partial derivative of v with respect to coordinate y 

• DYY(v) Second order partial derivative of v with respect to coordinate y. 

• DEL2(v) Two dimensional Laplacian of v. 



PDEase2D contains differential operators which make it much 
easier to write vector calculus operations than by using the 

scalar differential operators.

• PDEase2D allows the syntax GRAD(V)**2 and treats this as DOT(GRAD(V),GRAD(V)).

• For more information about vector operators, see Discussion: Div, Curl, and 
Natural Boundary Conditions.

• DIV(F) Div(F) Divergence of a vector . 

• GRAD(v) Grad(v) Gradient of a scalar. The result is a vector. 

• CURL(F) Curl(F) Curl of a vector . The result is the scalar magnitude of a 
vector normal to the computational plane. 

• CURL(V) Curl(v) Curl of the scalar component of a vector perpendicular to 
the computational plane. The result is a vector.



Vector Algebra Operations

• CROSS(arg1,arg2) The cross product. CROSS requires two vector arguments and returns a 
scalar value equal to the component of the vector cross product of arg1 and arg2 normal to the 
computational plane.

• DOT(arg1,arg2) The dot product. DOT requires two vector arguments and returns a 
scalar value equal to the magnitude of the vector dot product of arg1 and arg2.

• MAGNITUDE(arg) The magnitude function. MAGNITUDE requires one vector argument 
and returns a value equal to the magnitude of the vector arg.and returns a value equal to the magnitude of the vector arg.

• NORMAL(arg) The normal-component function. NORMAL requires one vector 
argument and returns a scalar value equal to the normal component of the vector argument. 
NORMAL only has meaning with respect to a vector argument on a defined external or internal 
boundary.

• TANGENTIAL(arg1) The tangential-component function. TANGENTIAL requires one vector 
argument and returns a scalar value equal to the tangential component of the vector argument. 
TANGENTIAL only has meaning with respect to a vector argument on a defined external or internal.

• VECTOR(arg1,arg2) The vector function. VECTOR requires two scalar arguments and 
constructs a vector whose components are arg1 and arg2.



Integral Operators

• INTEGRAL(arg1,["arg2"]) The area integral function. 
INTEGRAL requires one or two arguments. When only one 
argument is used, the function value is the area integral of 
the argument evaluated over the entire spatial domain of 
the problem. When two arguments are used, the second 
argument must be a named region defined in the 
BOUNDARIES section of a problem descriptor fileBOUNDARIES section of a problem descriptor file.

• BINTEGRAL(arg1,["arg2"]) The boundary integral function. 
BINTEGRAL requires one or two arguments. When only one 
argument is used the function value is the line integral of 
the argument evaluated over all boundaries of the problem. 
When two arguments are used, the second argument must 
be a named path defined in the BOUNDARIES section of a 
problem descriptor file.



Conditional Expressions

PDEase2D follows the conventional mathematical standards of 
evaluation arithmetic operators in conditionals. You can force a 
particular order of evaluation by using parentheses (  ) or [  ].

You can nest conditional expressions. When you use nesting, the 
else clauses are associated with the if clauses by the rule that the last 
else clause goes with the first if, etc.

PDEase2D Symbol Definition

= equal to
< less than
> greater than

<= less than or equal to
>= greater than or equal to
<> not equal to



Example
{ IFPARAM.PDE
This problem is a nonlinear test, which solves a modified steady-state Burger's equation. The conductivity is 

defined by a conditional expression. }
Title
"Nonlinear Heatflow, Conditional Conductivity“
Variables
u
Definitions
nl = u
a = if u<0.5 then 1+2*u else 2
Initial values
u = 1 - (x-1)**2 - (y-1)**2
Equations
div(a*grad(u)) + nl*dx(u) +4 = 0
Boundaries
Region 1
value(u)=0
start(0,0) line to (2,0) to (2,2) to (0,2) finish

Monitors
contour(u)
Plots
surface(u) dataviewer
contour(u) 
contour(a) as "Conductivity“
elevation(a,u) from (0,1) to (2,1)
End



Closed Boundary  conditions

You can use the Boundaries section to inform PDEase2D fully of complex physical 
geometries. The Boundaries section uses a hierarchical structure consisting of one 
subsection which must begin with the reserved word region, and as many additional 
subsections as needed to fully describe the physical geometry of the problem, each of 
which must begin with the reserved word REGION, feature, or exclude.

Boundaries

region [integer1]["region1_name"]
start ["path1_name"] (xcoord1,ycoord1)
geometric statement
geometric statement
geometric statement
finish

region [integer2]["region2_name"]
start [path2_name](xcoord2,ycoord2)
geometric statement
geometric statement
finish



feature [interger3]
start [path3_name](xcoord3,ycoord3)
geometric statement
geometric statement
Finish

exclude [interger5]
start [path5_name](xcoord5,ycoord5)
geometric statement
geometric statement

Feature subsections (when used) must follow all Region subsections, 
and Exclude subsections (when used) must follow all Region subsections 
and any Feature subsections.



Open Boundaries
Feature subsections are used to describe non-closed geometric 

entities. They are formed in exactly the same manner as Region 
subsections except that they do not have the terminating reserve word 
finish, and they do not enclose a subdomain with definable parameters. 
While not strictly enforced by PDEase2D, it is recommended that all 
regions be described prior to any features.

ExampleExample

{describe a square with an internal line feature}
Boundaries
Region
start (0,0)
line to (3,0) to (3,3) to (0,3) to finish
Feature
start (0.5,1.5)
line to (2.5,1.5)



Two dimensional regions
• Region subsections are used to describe closed geometric entities which are included in the problem. 

They are formed by beginning with the reserved word start followed by a starting coordinate point, 
"walking" a continuous boundary using line and arc segments, and terminating with the reserved 
word finish.

• The line and arc segments used in forming Region subsections are:

• line to (X,Y)

• arc to (X,Y) to (X1,Y1)arc to (X,Y) to (X1,Y1)

• arc (radius=R) to (X,Y)

• arc (center=X,Y) to (X1,Y1)

• arc (center=X,Y) angle=

• where,  is an angle measured in degrees and follows the convention that positive angles rotate 
counter-clockwise while negative angles rotate clockwise, and the end point is equivalent to the 
coordinate specification determined by the radius swept out by the angle.

• When successive segments of the same kind (either line or arc) are used, the segment name does 
not have to be repeated.



Example
{describe a simple square}
Boundaries
Region
start (0,0)
line to (3,0) to (3,3) to (0,3) to finish

{describe a hollow square}
Boundaries
Region
start (0,0)
line to (3,0) to (3,3) to (0,3) to finish
start (1.5,0.5)
line to (2.5,1.5) to (1.5,2.5) to (0.5,1.5) to finish



Specifying Segment Boundary 
Conditions

• Segment boundary conditions are specified by statements of the form:
• value(variable) = expression
• natural(variable) = expression
• load(variable) = expression

• In each case, the identifier (variable) assigns the designated boundary condition 
t th ti l diff ti l ti i t d ith i bl d ib d ito the partial differential equation associated with variable as described in 
EQUATIONS Sections.

• Natural and load are synonymous. They represent generalized derivative boundary 
conditions, including Neumann boundary conditions for the Poisson equation and 
surface loading in stress problems. 

• Boundary condition specifications must immediately precede either the reserved 
word start, line or arc and cannot precede the reserved word to. If a boundary 
condition changes within a series of similar boundary segments the boundary 
segment type (line or arc) must be repeated.



Example
{this problem represents a semiconductor diode with a thin active region on top of a passive region which is then bonded to 

a metal heatsink. The entire structure is convectively coupled to the surrounding ambient}

Boundaries
region 1 {Defines the maximum extent of the system}
start(1,0)
natural(Temp) = B2*(Ta - Temp)
line to (1,.375) 
natural(Temp) = B3*(Ta - Temp)
line to (1,.5) to (-1,.5) to (-1,.375)
natural(Temp) = B2*(Ta - Temp)
line to (-1,0)
natural(Temp) = B1*(Ta - Temp)
li t ( 2 5 0) t ( 2 5 5) t ( 2 0 5)line to (-2.5,0) to (-2.5,-.5) to (-2.0,-.5)
line to (-2.0,-1.25) to (-1.75,-1.25) to (-1.75,-.5)
line to (-.75,-.5) to (-.75,-1.5) to (-.5,-1.5) to (-.5,-.5)
line to (.5,-.5) to (.5,-1.5) to (.75,-1.5) to (.75,-.5)
line to (1.75,-.5) to (1.75,-1.25) to (2,-1.25) to (2,-.5)
line to (2.5,-.5) to (2.5,0) to finish
{passive region of the diode}
region 2 "passive“
K = .1
{does not need boundary conditions since region 2 is entirely within region 1}
start(1,0)
line to (1,.375) to (-1,.375) to (-1,0) to finish
{active region of the diode}
region 3 "active“
K = .1
A = 1 {turns source on in this region}
start(1,.375)
line to (1,.5) to (-1,.5) to (-1,.375) to finish



Specifying Boundary Point Values

You can fix boundary values at specific points on a boundary, by following a 
coordinate specification with the statement:

point value(var) = expression

Examplep

boundaries {define the problem domain}
Region 1 {... only one region }
start(-1,-1)    
natural(Temp)=0
line to (0,-1) point value(Temp) = 0 
to (1,-1) to (1,1) point value(Temp) = stage
to (-1,1) to (-1,0) point value(Temp) = 0
line to finish



Describing Steady-State Problems
• TITLE Sections [optional]  

• MFESWITCHES Sections [optional]  

• SELECT Sections 

• COORDINATES Sections [optional]  

• VARIABLES Sections 

• DEFINITIONS Sections• DEFINITIONS Sections 

• INITIAL VALUES Sections [optional]  

• EQUATIONS Sections 

• CONSTRAINTS Sections [optional]  

• BOUNDARIES Sections 

• MONITORS Sections [optional]  

• PLOTS Sections [optional]  

• END Sections 

• File and DataViewer Output Summary



An optional MFE_SWITCHES section may be included at the start of any PDEase script section 
in the format shown below:

Example

{# MFE_Switches

Keep_Notifications {Keep notifications section on reexecution}

Root_Name(foo) {Root name of PDEase variables for this script (default PDZ)}

Large_Engine {Uses the large node limit engine. Default is to use 
64000 node limit model}

PDEase_File_Path(X:\foo\bar  #} {- path for ancillary files (e.g., .tbl files)

The default location is 1) the directory where Pdease2D opened the .pde or .mfe file; or 2) the 
\Macsyma2\PDEase2D directory}

The MFE_SWITCHES section must be the first section of any PDEase2D script. 

The switches are optional, case insensitive, and may be listed any order. Note the switches are 
actually enclosed inside a PDEase2D comment section {?. You must use{# ?#} to 
distinguish an MFE_SWITCHES section from a comment.



COORDINATES Sections [optional]
Example

title "Axi-symmetric Heatflow "

Coordinates
ycylinder("R","Z") {select a cylindrical coordinate system, with the rotational axis along 

the "Y" direction and the coordinates named "R" and "Z" }

Variables
Temp(range 50) {Define Temp as the system variable with approximate value range 0Temp(range=50) {Define Temp as the system variable, with approximate value range 0 

to 50 }

When either xcylinder("name_x","name_y") or ycylinder("name_x","name_y") is specified, PDEase2D 
automatically expands any DIV, GRAD, and CURL operators used in equations and forms the Galerkin
integrals with the volume element radius*d(radius)*d(axis). When the normally cylindrical coordinates 
r and z are used the volume element is rdrdz).

You should use a COORDINATES section for axisymmetric problems and write equations using the 
operators DIV, GRAD and CURL if possible.

PDEase2D defaults to CARTESIAN("x","y") in the absence of a Coordinates section.



VARIABLES Sections
• PDEase2D uses the VARIABLES section to declare all 

the dependent variables for the problem. Also, you 
can assign names to dependent variables.

• You must begin names with an alphabetic character; 
you cannot use separators or reserved symbolsyou cannot use separators or reserved symbols. 
Variable names can be of any length. Dependent 
variable names may be a single character other than 
those reserved for independent variables, a word 
other than a reserved word, or a compound word 
like heat_flux. PDEase2D always treats hyphens (-) as 
a minus sign. You cannot use them to form 
compound names.



Variables statements can include an optional range clause. 
When a range clause is used it takes one of the following forms 
and applies only to the variable with which it is associated:

n variable_name(range=min,max)

n variable_name(range=max)

n variable_name(min,max)

n variable_name(max)

where:

variable_name Name assigned to the dependent variable.

range Reserve word signifying that range values are to follow.

= Reserved symbol.

min Minimum expected value of the variable.

max Maximum expected value of the variable.



DEFINITIONS Sections
PDEase2D uses the Definitions section to declare numerical constants, 

functions, and expressions, to assign names to them for later use in the 
problem descriptor file, and optionally to assign global (default) values to 
them. In general the individual statements declared in the Definitions 
section relate to some physical entity such as material parameters.

Example

Variables
U
V
Definitions
conductivity = 1.03e5 + 1.0/sin(34*x)
resistivity = 1/conductivity
scale_length = 2
rho = 1.25 + sqrt(u^2 + v^2)



INITIAL VALUES Sections [optional]

• Pdeases2D uses the Initial Values section, which is optional for steady state 
problems, to initialize the dependent variables.

• Dependent variables can be initialized to constants, expressions, functions 
and previously defined definitions. By default any dependent variable not 
initialized with an initial value statement is initialized to zero. Example

E lExample 

Variables
Temp

Definitions
Temp0 = ((x-1)**2 + (y-1)**2)

initial values
Temp = Temp0



EQUATIONS Sections
• The Equations section is used to list the partial differential 

equations to be solved. Equations are written in the same 
way they would be written on paper with the minor 
concession that the partial differential operators are 
specified with the reserved symbols DX and DY for the first 
order partial derivative with respect to x and y, DXX and 
DYY for the second order partial with respect to x and yDYY for the second order partial with respect to x and y. 

• While not required by PDEase2D, steady state equations 
should always be written with all variable dependent terms 
to the left of the equal sign and all non-variable dependent  
terms to the right of the equal sign. Placing certain 
differential terms of an equation to the right of the equal 
sign can adversely affect the sign of natural (load) 
boundary conditions.



{thermal elastic expansions of a free body}

variables

Tp {temp}
up {x - displacement}
vp (y - displacement}

Equations
{equation defining temperature dependence}
dx(kp33*dx(Tp)+kp13*dy(Tp)) +dy(kp13*dx(Tp)dx(kp33 dx(Tp)+kp13 dy(Tp)) +dy(kp13 dx(Tp)
+kp11*dy(Tp)) + Qs= 0.

{equation defining x directed displacement}
dx(C31*dy(vp) + C33*dx(up) +2*C35*0.5*(dy(up)+dx(vp)) - apxx*Tp)
+dy(C51*dy(vp) + C53*dx(up) +2*C55*0.5*(dy(up)+dx(vp)) - apxy*쎄)= 0.

{equation defining y directed displacement}
dx(C51*dy(vp) + C53*dx(up) + 2*C55*0.5*(dy(up)+dx(vp)) - apxy*Tp)
+dy(C11*dy(vp) + C13*dx(up) +2*C15*0.5*(dy(up)+dx(vp)) - apyy*쎄)= 0.



CONSTRAINTS Sections [optional]
{A closed reactor system in which no material is added or removed. Monovalent species 'a' reacts with monovalent

species 'b' to produce 'c' releasing heat while 'c' decomposes into 'a' and 'b' absorbing heat}
variables

Temp
a
b
c

Definitions
ktemp = 0.1
ka = 0.05
kb 0 05kb = 0.05
kc = 0.01
heat = 0
eabs = 1.0
a0 = 0.1*(1-r*r) {remember in cartesian coordinates PDEase2D defines r = sqrt(x^2 + y^2) }
b0 = 0.1*(1-r*r)
c = c0
Equations
div(ktemp*grad(temp) - eabs*c*temp + eabs*a*b + heat = 0
div(ka*grad(a)) - a*b + c*temp = 0
div(kb*grad(b)) - a*b + c*temp = 0
div(kc*grad(c)) + a*b - c*temp = 0
constraints {total mass is conserved}
integral(a + b + c) = integral(a0 + b0+ c0)



BOUNDARIES Sections
boundaries

region 1 "outer"

start "outer name" (-1,-1)

line to (1,-1) to (1,1) to (-1,1) to finish

region 2 "lower"

start(-1,-0.1)

line to (1,-0.1) to (1,1) to (-1,1) to finish

feature 3

start "feature name" (0,-0.4) to (0,0.4)

exclude 4

start(-0.5,0) arc(center=-0.2,0) angle=360 finish



MONITORS Sections [optional]
• contour(arg) Two dimensional display requiring one argument which 

displays an equal contour map.

• surface(arg) Three dimensional perspective display requiring one 
argument which displays its argument in elevation.

• elevation(arg1,[arg2,..]) Two dimensional display (sometimes called a line 
t) i i t l t t hi h di l th l f itout) requiring at least one argument which displays the value of its 

argument(s) vertically. Elevation monitors must be followed by either a 
from (X,Y) to (X1,Y1) line specification or an on "boundary_name" 
specification. Also draws a thumbnail sketch. 

• vector(arg1,arg2) Two dimensional display requiring two arguments 
which displays the sum of vector components as a directed arrow.

• grid(arg1,arg2) Two dimensional display requiring two arguments. 
Grid displays are particularly useful for displaying displacements in 
stress/strain problems.



PLOTS Sections [optional]{ TWOMATL.PDE }
{ *****************************************************************

This sample demonstrates the application of PDEase2D to heatflow problems with differing material parameters.
We define a square region of material with a conductivity of 5. Imbedded in this square is a diamond-shaped
region of material with a uniform heat source of 1, and a conductivity of 1.

*****************************************************************}
title "Hot Diamond“
Variables
Temp(range=0,1) {declare "Temp" to be the system variable, with approximate value range 0 to 1}
Select
paint = off
DefinitionsDefinitions
K {declare the conductivity as a parameter, but leave its value definition until later}
Heat {similarly for the Heat source}
Flux = -K*grad(Temp)
initial values
Temp = 0 {unimportant in linear steady-state problems}
Equations
div(K*grad(Temp)) + Heat = 0 {define the heatflow equation}
boundaries {define the problem domain
Region 1 {Define the outer boundary}
K=5 {Define the conductivity in the outer region}
Heat=0 {Define the Heat source in the outer region}
value(Temp)=0 {Prescribe the boundary temperature}
start "outer" (0,0) {Start the outer boundary at the lower left}



line to (3,0) {Walk the boundary counterclockwise}
to (3,3)
to (0,3)
finish {Return to start}
Region 2 {Define the imbedded diamond}
K=1 {Define the Conductivity}
Heat=1 {Define the Source}
start "inner" (1.5,0.5) {Start at the bottom vertex}
line to (2.5,1.5) {Walk the boundary counterclockwise}
to (1.5,2.5)
to (0.5,1.5)
finish {Return to start}

Monitors

PLOTS Sections [optional]

Monitors
contour(Temp) {show the Temperature during solution}
plots {write these hardcopy files at completion}
grid(x,y) {show the final grid}
contour(Temp) as "Temperature" {show the solution }
contour(Temp) zoom(2,1,1,1) {Zoom in on diamond corner}
as "Temperature Zoom“
elevation(Temp) {show a diagonal line-out of temperature}
from (0,0) to (3,3) as "Temperature Zoom" print
surface(Temp) interactive
vector(-dx(Temp),-dy(Temp)) as "Heat Flow“
elevation(normal(flux)) on "Outer" range(0,1)
elevation(normal(flux)) on "Inner" range(0,1)
end



Describing Time-Dependent 
Problems

• Time Range 

• Variables Section Range Clause [optional]  

• Initial Values 

• Equations 

• Time Dependent Monitors and Plots 

• HISTORIES Section [optional]  

• File and DataViewer Output 



TIME Section Time Range 
Specification [optional]

Direct specification of the problem time domain is most easily made by including in the input file a 
TIME section. When used, the TIME section must contain a single statement of the form:

[from] [=] time1 to [=] time2 [by [=] increment]

where:

from Reserved word which is optional.

= Equal sign which is optional.

time1 Start of the time domain.

time2 End of the time domain.

by Reserved word which may be replaced by reserved word deltat

increment Optional and when not used defaults to a value of 10e-4*(time1-time2), is the value of the 
initial time step. PDEase2D will adjust subsequent time steps up or down as required by the 
problem.



Example
Title
'Masked Diffusion‘
Select
errlim = 0.001
Variables
u(range=0,1)
Definitions
concs = 1.8e8 {surface concentration}
D = 1.1e-2 {diffusivity}
conc = concs*u
cexact = concs*erfc(x/(2*sqrt(D*t)))
uexact = erfc(x/(2*sqrt(D*t)))
{masked surface flux multiplier}
M 10* l ( 0 3 0 7)M = 10*upulse(y-0.3,y-0.7)
initial values
u = 0
Equations
div(D*grad(u)) = dt(u)
Boundaries
region 1
start(0,0)
natural(u) = 0      line to (1,0)
natural(u) = 0      line to (1,1)
natural(u) = 0      line to (0,1)
natural(u) = M*(1-u)  line to finish
feature {a "gridding feature" to help localize the activity}
start (0.02,0.3) line to (0.02,0.7)
Time
0 to 1 by 0.001



Equations
• For PDEase2D to treat a problem as a time dependent problem, the equation(s) must contain time 

derivative term(s) of the form:

• dt(variable)

• Example

{LASERXTT.PDE}

Initial valuesInitial values

temp = 0

equations

div(k*grad(temp)) + source) = cp*dt(temp)

• PDEase2D recognizes only first order partial derivatives with respect to the temporal independent 
variable. You must rewrite systems which involve higher order partial derivatives by using 
intermediate dependent variables to reduce the system to first order in time.



For.By.To Time Dependent 
Monitors and Plots Specification

• You can specify monitors and plots using of any of the following statements:

• for t [=] ts [by t1 to] t1 [by t1 to] ..... ti

where:

for Reserved word.

t Reserved symbol.

= Optional relational operator.

ts Number or the reserved word starttime.

by Reserved word.

t1 Time increment.

t1 Number.

ti Number or the reserved word endtime.



Example
time

from 0 to 1 by 0.1

plots {write these hardcopy files at specified times}

for t=0 by 0.01 to 0.1 by 0.1 to endtime

grid(x,y) {show the final grid }

contour(Temp) as "Temperature" range=(0 0 2) {show the solution }contour(Temp) as Temperature   range=(0,0.2) {show the solution }

contour(Temp) zoom(2,1,1,1)     range=(0,0.2) {Zoom in on diamond

corner } as "Temperature Zoom"

elevation(Temp) {show a diagonal line-out of temperature}

from (0,0) to (3,3) range=(0,0.2) as "Temperature Zoom" print

surface(Temp) range=(0,0.2)

vector(-dx(Temp),-dy(Temp)) range=(0,0.5) as "Heat Flow"

elevation(normal(flux)) on "Outer" range=(0,0.5)

elevation(normal(flux)) on "Inner" range=(0,0.5)



Multiple Time Dependent 
Monitors and Plots Specification

• You can use multiple time sequence statements for MONITORS and PLOTS. Each time sequence 
statement stays in effect until you declare a new one.

• Example

{OPENTUBE.PDE}

plots

for cycle 10 {watch the asked events by cycle}for cycle=10 {watch the asked events by cycle}

grid(x,y)

elevation(Temp) from (0,0) to (xev,yev)

elevation(C) from (0,0) to (xev,yev)

for t= 0 by 0.1 to 1 {also print at some fixed times}

contour(Temp)

contour(C)



HISTORIES Section [optional]
• You can include a HISTORIES section in time-

dependent problems. You must begin this section 
immediately after the PLOTS section and 
immediately before the END section.

• You can use the HISTORIES section to display results• You can use the HISTORIES section to display results 
as a function of time. Optionally, you can place this 
information in a file or DataViewer.

• PDEase2D supports one type of history statement:

• history(arg) at (X,Y) [(X1,Y1?  {file | fileonly } 
{dataviewer | datavieweronly | dv | dvonly}



Example
{Modified OPENTUBE.PDE}

plots

for cycle=10 {watch the fast events by cycle}

grid(x,y)

elevation(Temp) from (0,0) to (xev,yev)

elevation(C) from (0,0) to (xev,yev)

for t= 0 by 0.1 to 1 {also print at some fixed times}

contour(Temp)

contour(C)

elevation(Temp) from (0,0) to (xev,yev)

elevation(C) from (0,0) to (xev,yev)

histories

history(Temp) at (0,0) (xev/2,yev/2) (xev,yev) as "Temperature"

history(C) at (0,0)  (xev/2,yev/2) (xev,yev) as "Reaction Completion"

end



Staging

• The counter established by the SELECT 
statement stages=integer can be used in 
subsequent expressions in PDEase2D 
input files by use of the reserved wordinput files by use of the reserved word 
stage. Each time PDEase2D runs the 
problem (stages the problem) the 
reserved word stage is incremented by 
one starting with an initial value of one.



{ Modified VISCOUS.PDE }

{ **************************************************************
Steady Viscous Flow in a Channel with Obstruction

This example shows the application of PDEase2D in viscous flow. The Navier-
Stokes equations for steady incompressible flow in two dimensions in Cartesian 
coordinates are

dens*(dt(U) + U*dx(U) + V*dy(U)) = visc*del2(U) - dx(P) + dens*Fx
dens*(dt(V) + U*dx(V) + V*dy(V)) = visc*del2(V) - dy(P) + dens*Fy

together with the continuity equation
div[U,V] = 0

Where
U and V are the X- and Y- components of the flow velocity
P is the fluid pressure
dens is the fluid density 
visc is the fluid viscosity
Fx and Fy are the X- and Y- components of the body force.
}



In order to derive a third equation for the pressure variable, we differentiate the U-equation 
with respect to X and the V-equation with respect to Y and add the equations. Using the 
continuity equation to eliminate terms, we get

del2(P) = 2*dens*(dx(U)*dy(V) - dy(U)*dx(V))

Although this equation is consistent with the continuity equation, it does not enforce it. 
However, since div[U,V] = 0, we are free to add it at will to the pressure equation. A negative 
value of div[U,V] implies the destruction of material, so we need a positive pressure to oppose 
the flow. This implies a modified pressure equation

del2(P) = 2*dens*[dx(U)*dy(V) - dy(U)*dx(V)] + L*(dx(U)+dy(V))

where L is a "large" number chosen to enforce "sufficient" compliance with the material 
conservation equation. Setting U and V equal to zero in the U and V equations to reflect the 
conditions on a no-slip boundary we getconditions on a no-slip boundary, we get

dx(P) = visc*del2(U)
dy(P) = visc*del2(V)

These relations can be used to specify the natural boundary condition for the pressure 
equation. The normal component of the gradient of P is

n<dot>grad(P) = nx*dx(P) + ny*dy(P)

where nx and ny are the direction cosines of the surface normal. The problem posed here 
shows flow in a 2D channel blocked by a bar of square  cross-section. We run the problem in 
three stages, with successively larger values of L. The user can identify from this sequence a 
value of L which is satisfactory for his application.
We have included three elevation plots of X-velocity, at the inlet, center and outlet of the 
channel. The integrals presented on these plots show the consistency of mass transport across 
the channel.

**************************************************************



Title
'Viscous flow in 2D channel, Re < 0.1'

SELECT STAGES=3
Variables
u(0.1)
v(0.01)
p(1)

Definitions
L 5 L 1 5Lx = 5       Ly = 1.5
Gx = 0       Gy = 0
p0 = 1
speed2 = u^2+v^2
speed = sqrt(speed2)
dens = 1
visc = 1
vxx = (p0/(2*visc*Lx))*(Ly-y)^2 { open-channel x-velocity }
rball=0.25
WEIGHT = 10^STAGE



initial values
u = 0.5*vxx v = 0  p = p0*x/Lx

Equations
div(grad(u)) - dx(p)/visc = dens*(u*dx(u) + v*dy(u))/visc
div(grad(v)) - dy(p)/visc = dens*(u*dx(v) + v*dy(v))/visc
div(grad(p)) = 2*dens*[dx(U)*dy(V) - dy(U)*dx(V)] + WEIGHT*(dx(u)+dy(v)) 

Boundaries
region 1
start(0,0)     
load(u) = 0  value(v) = 0 load(p) = 0
line to (Lx/2-rball,0)
value(u)=0 value(v)=0 load(p)= - visc*del2(u)
line to (Lx/2-rball,rball)
load(p)=visc*del2(v)
line to (Lx/2+rball,rball)
load(p)=visc*del2(u)
line to (Lx/2+rball,0)
load(u) = 0  value(v) = 0 load(p) = 0
line to (Lx,0)
load(u) = 0      value(p) = p0
line to (Lx,Ly)
value(u) = 0     load(p) = -visc*del2(v)
line to (0,Ly)
load(u) = 0      value(p) = 0
line to finish



monitors

contour(speed)

plots

grid(x,y)

contour(u)

contour(v)

contour(speed)

vector(u,v) as "flow"

contour(p) as "Pressure"

contour(dx(u)+dy(v)) as "Continuity Error"

elevation(u) from (0,0) to (0,Ly)

elevation(u) from (Lx/2,0) to (Lx/2,Ly)

elevation(u) from (Lx,0) to (Lx,Ly)

end



Using Staging to Initialize Non-
Linear Problems

• Staged problems always use the solution and solution grid obtained 
during stage 1 to initialize stage 2, and that obtained during stage 2 to 
initialize stage, 3 etc. Because of this feature, staging can effectively be 
used to run a linearized version of a non-linear problem to obtain a 
good initial value before running the non-linear problem. Staging lists 
can also be used effectively to gradually approach a problem which 
might otherwise be unstable. 

• Example

{Modified MAGSTAGE.PDE}

{This example demonstrates the use of parameter staging to stabilize a 
nonlinear problem. A linear solution is used as the initial condition for a 
nonlinear solution. The problem is that of MAGNET.PDE, and considers 
the determination of the magnetic vector potential A in a cyclotron 
magnet.} 



Animated Time-Dependent 
Problems

• You can add the clause animate to any plot type in  monitors 
or plot section in time dependent problems. This will produce 
a sequence of frames when the calculation ends. For example, 
in the sample problem opentub1.mfe, the plot section has the 
commands

for cycle=10                   { watch the fast events by cycle }
grid(x,y) animate
contour(Temp) animate as "Temperature - cycles" 
contour(C) animate as "Reaction Completion - cycles" 
for t= 0 by 0.1 to 1          { also plot at some fixed times }
contour(Temp) animate as "Temperature“
contour(C) animate as "Reaction Completion“
for t= 0.20 by 0.01 to 0.3        { show some surfaces during burn }
surface(Temp) animate as "Temperature“
surface(C) animate as "Reaction Completion"



File Output Formats and 
DataViewer Formats

• PDEase2D can produce the following kinds of file output

• Output from Eigenvalues (Pdz.eig)

• Output from Elevation plots

• Output from Contour plots

• Output from Surface plots

• Output from Histories

• By default, the root_name of this PDEase2D program is Pdz. You 
can change this using the MFE_SWITCHES.



Title "File output test"  

coordinates
cartesian(x,y)     

definitions
b = 1.0
variables
u     
Initial values
u = 1-(x-0.5)**2-(y-0.5)**2    
equations
del2(u)+  lambda*u = 0     
boundaries
region 1

start(0,0) 
value(u)=0 line to (1,0)

to (1,0.25) 
to (0.5,0.47)
to (0.25,0.47)
to (0.25,0.50)
to (0.5,0.50)
to (1,0.75)
to (1,1)
to (0,1) 

finish     
plots

surface(u) file
contour(u) file
elevation  (u) from (0,.5) to (.5,0) file

end


