FEMLAB 을 이용한 흡착과 열분해 Modeling.

🌃 Model Navigator		
New Model Library Use	er Models Settings	
Space dimension:	2D	Multiphysics Add Remove Geom1 (2D) Weak Form, Boundary (wb)
● Time-de ● Eigenva	pendent analysis, wave extensior lue analysis Point	Dependent variables: cs Application Mode Properties
<		Add Geometry
Dependent variables: Application mode name: Element:	u wb2 Lagrange - Quadratic 💙	Ruling application mode: Weak Form, Boundary (wb)
		OK Cancel

- 1. Comsol multiphysics > PDE modes > Weak Form, Boundary 선택 2. Comsol multiphysics > Convection and Diffusion < Convection and Diffusion > Transient 를 선택
- 3. Dependent variables 를 cs로 변경하고 Add 를 선택

1. Option > Constants 를 선택하고, 값을 입력한 후 OK 를 클릭

10	FEMI	_AB - G	eom1,	/Weak Fo	orm, Bou	ndary (wb):[Untit	iled]											-	
Eile	Ed	it Option	s <u>D</u> ra	w Physic	s <u>M</u> esh	Solve Pos	tprocessing	g Multiph	ysics H	elp										
		a 😂 3				=\$ =\$ =	≌ Ø ≯	لووره	\$ ₽ ¥Z	∋ΩΩΩ6Ω6	8 🐼 🕺									
H																				
0	•	1		1	1	1			1		1	1						1	1	
O	$\overline{\mathbf{Z}}$																			
•		0.8	- ·							•										-
~	•																			
~	É	0.6	- ·							•							•		+	-
- 88	世																			
+		0.4	- ·					Recta	ngle											-
	e							Size		_	Rotation ar	ngle								
		0.2	- ·					Width:	1e-4		۵: 0	(deg	grees)							-
								Height	: 3e-4											
٩		0	- ·							_										-
뇄								Base:	Corner	<u> </u>	Style: Solid		~							
Б		-0.2	L .					x y:	-1e-4	['	Name: R1									-
~																				
X		-0.4	L .							ок	Cance		pply							-
r																				
		-0.6	L .																	-
		-0.8	L .																	-
		-1	L																	~
			-1.6	-1.4	-1.2	-1	-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	
Add	ling r	ectangle	with la	abel 'R1'.																^
(-1.6	5, 1)				GRID EQU	AL SNAP D	ALOG MUL	TI SOLID	_										Memory: I	7.7 / 16.7)
2	시각	박 (9 🟉	💿 👋 📑	🧿 NateOn		🌾 FEI	MLAB - Ge	eom1	🤏 쪽지 쓰:	זי) 박주희 ((박주희) 님			A 🥺	₿☆ <i>⊘</i> }	🙆 오ः	≣ 9:21

1. <shift>+Rectangle/Square 을 선택하고, 값을 입력한 후 OK를 클릭

Option > Expressions > Boundary Expressions 을 선택.
 5번 경계를 선택하고, 반응식을 나타내는 값을 입력.

Option > Expressions > Subdomain Expressions을 선택.
 1번 도메인을 선택하고, 유체식을 나타내는 값을 입력.

1. Physics > Boundary Setting 을 선택하고, 값을 입력한 다음 OK 클릭

- 1. Multiphysics > Weak Form, Boundary 를 선택.
- 2. Physics >Boundary Setting 을 선택하고, Init 탭과 Weak 탭에 값을 입 력한 다음 OK 클릭.

- 1. Mesh > Free Mesh Parameter 을 선택하고, Boundary 탭을 선택한 후, 5번 경계를 선택.
- 2. Maximum element size 항목에 1.5e-6을 선택하고, Remush 를 클릭.

Image: Second J (Weak Form, Boundar) Elie Edit Options Oraw Physics Mesh Solve Image: Second J (Methods) Image: Second J (Methods) Image: Second J (Methods)	(wb): [Untitled] Postprocessing Multiphysics Help = ≅ (愛) ⊘ ⊘ 戸 井 ☆ ☆ ☆ Ω Ω ◎ (♪)	8	
×10 ⁻⁴		HI	2
з		_	
2			
0			1
-1			
-2			
-5 -4	-2 -1 0	1 2	3 4 5 ×10 ⁻⁴
Number of degrees of freedom: 2765 Solution time: 86.953 s Initialized mesh consists of 1257 elements.			
(6.612e-5, 3.653e-5) EQUAL	🌾 FEMLAB - Geom1 🍟 fem11.bmp - 🗆	림판	Memory: (16.7 / 17.8) 2

- 1. Postprocessing > Domain Plot Parameters 을 선택.
- 2. Line/Extrusion 탭을 선택하고, y-axis data 에 있는 Predefined quantities 에서 Convection and Diffusion > Concentration, c 를 선택.

- 1. Boundary selection 에서 5번 경계를 선택, x-axis data 에서 y를 선택 하고 Apply 클릭.
- 2. 5번 경계 길이에 대한 농도 분포 그래프를 확인 할수 있다.

🌃 Model Navigator		
New Model Library User Model	s Settings	
Space dimension: 2D	ons Jer lence Model Navier-Stokes	Chemical Engineering Module
 ⊕ Non-Newtonian 	Flow 🗸	Transient and steady-state analysis in 2D.
Dependent variables: uvp Application mode name: ns Element: Lagran	ge - P ₂ P ₁ ✓	Multiphysics
		OK Cancel

- 1. Chemical Engineering Module > Momentum Transport > Laminal Flow > Incompressible Navier - Stokes를 선택.
- 2. <Shift>+Rectangle/Square를 클릭, 너비와 높이 값을 입력 후 OK클릭.
- 3. <Shift>+Ellipse/Circle (Centered)를 클릭, Radius, x와 y값을 입력 후 OK클릭.

10	FMI	AR – G	eom1/	/Incor	npressible	Navier-Str	ikes (ns) :	[Untitled]								(
Eile	Edit	t <u>O</u> ption	s <u>D</u> rav	w Phy	sics <u>M</u> esh	Solve Post	processing	Multiphysics	Help	1 -							
D	i 🖉 🖕	18 8		8	$\triangle \& \&$		≧ 🧶 🗩	∋ 🗣 🖗 🛛	Ω Ω6 Ω6								
			<	1						1)						>
0	•	0.04	_														_
-																	
1	•																
r	$\overline{}$	0.03	_														-
2																	
88	ţ£																
+		0.02	-														-
Š	e,																
ē		0.01	-														-
ő				CO2						\cap							_
≯∓										\bigcirc							
Б		0	-														1
×		0.01															
r		-0.01															11
		-0.02	_														-
		-0.03	-														-
												1					~
				0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.11	0.12	
Add	ing re	ctangle	with Ia	bel 'R'	Γ.												^
Add	ing re	ctangle	with Ia	bel 'Ra	21.												
A00		rcie wit	n tabet	U .	GRID FOI			SOLID								Memory	. (7.6.(16.7
2	시즈	1 (• •	₩ 생물화공	1.bmp	G FEML/	AB - Geom1						A	[注] (◇風)	the mory	2章 2:44

<Ctrl>+<A>를 클릭, 전체 구조체 선택, Difference 아이콘 클릭,
 Zoom Extents를 클릭하면 다음 그림을 확인 할 수 있다.

1. Subdomain Selection에서 1을 선택하고, 밀도와 점도를 입력 후 OK 클릭.

10	EMI AR	- G	enm1.	/Incor	npressible	Navier-St	nkes (ns) :	[Intitled]									
Eile	Edit Q	ption:	s <u>D</u> ra ⊡⇔ ø	w Phy main	isics Mesh I∧ ∧ ∧ I	Solve Pos	processing	Multiphysics	Help								
		9 30	42 (🖪 ka			= 👐 🗩 .	Ø₽%*	W 922 022 22	S 🔥 🤱							
			<	1						1)						>
		0.04	_														-
•																	
\checkmark		0.03	_														-
							Boundary	Settings -	Incomore	ssible Navi	er-Stokes	(ns) 🖡	2				
巨																	
		0.02	-			· · · ·	u =0										-
e																	
							Boundary s	election	- Boundary or	nditions							
		0.01	-	1			1		Boundary c	ondition: No slip		✓					-
							3	=	Quantity	Value/	Expression	Descriptio					
							4		Ve	0		v-velocity					
		0	-				6		p ₀ q	0		Pressure				 >	-
							7 Select F	av aroun									
								berneteries									
	-1	-0.01	-					boundaries					1				1
										ОК	Cancel	Apply	1				
		0.02	-														
	-1	0.03	_														-
																	~
				0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.11	0.12	
Add	ing rectar	nale i	with Le	hel 'D'													~
Add	ing rectan	ngle i	with la	ubel 'Ra	2'.												-
Add	ing circle	e with	n labe	1011.													~
(0.06	75,0.0282)	2	-		GRID EQ	JAL									N#1 0 - 7	Memor	y: (9.1 / 16.7)
	지역) (3 (C)	ల ″	🛛 👹 생물화공	: 3,bmp	FEML	AB - Geom1.						A	、演 🕓 🐴	VI 🧷 💋 -	오章 2:48

1. Physics > Boundary Setting을 클릭, 값을 입력 후 OK 클릭.

10	FEMI AB	3 - G	enm1/	Incom	pressible	Navier-Stol	kes (ns) :	[Untitled]								ti i	
Eile	Edit 🤇	⊇ption ≘z Iv	s <u>D</u> rav	v Ph⊻s	sics Mesh	Solve Postp	rocessing	Multiphysics	Help								
		⊒ 7 ∂t		9 [KC				<i>> ></i> xr x	925 025 25	S 🗛 8							
B			<														>
۰					1	1	1	1	1		1	1		1		1	^
\mathbb{Z}		0.04	-														1
\mathbb{Z}		0.03	_								1. A. A.						-
							Mesh	Parameters									
							Global	Subdomain Bo	undary Poir	t Advanced							
e.		0.02	-				Sub	domain selection									1
							1		Maxin	ium element size	: 1e-3						
		0.01	-						Elema	nt growth rate:		_					-
		0															
		Ū															
								Select by group	-								
		-0.01	-										÷				-
										Remesh	ок	Cancel					
		-0.02	_														
		-0.03	-					•		•							-
				5	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.11	0.12	
Add	ing recta		with Ial	ool 'D1													•
Add	ing recta	angle	with Ia	pel 'R2	÷.												-
Add	ing circl	le with	h label		GRID FO											Marcan	V (9.7 (46.7)
2	시작) (>	₩ 생물화공	4.bmp	🌀 FEML	.AB - Geom1						A	漢(₩emor	y. (3.7718.7) 오章 2:49

1. Mesh > Free Mesh Parameter 을 선택, Maximum element sizedp 1e-1을 입력 후 OK 클릭,

🎁 FEMI AR - G	ienm1/Incom	pressible Na	vier-Stokes (ns):[I	Intitled]								
Eile Edit Option	ns Draw Phys	ics Mesh So	Ive Eostprocessing ML	ltiphysics Hel	р 							
	6 •••••••••••••••••••••••••••••••••••••			≥1 26 M +28 1≪	0 28 2 26 2	(1) (1)						
			Restart									_
	<					- IIII - J						
0.04												
0.03												
			Progress - Solve	Problem								
0.02					Matrix factori	zation						
			Progress Log									
0.01			Description	Progres	s Converge	nce Paramete	r Value				1701	
			Nonlinear solver	10 %	0.23	Step	1	Stop				=
0	Participation of the		UMEPACK	0%		Step	0	Stop				
								Stop				
-0.01												
			Close automatically					Cancel				
-0.02												
-0.03												
												~
	0	0.01	0.02 0.03	0.04	0.05	0.06	0.07	0.08 0.09	0.1	0.11	0.12	
Adding circle wit	h label 'C1'.											^
Initialized mesh Number of degrees	consists of 473 of freedom: 21	2 elements. 994										
(0.0239, 0.0435)	- or moedown 21	EQUAL									Memory: (10.4 / 16.7)
🏄 시작 🔰 🕻	9 🖉 오 🔌	🦉 생물화공 5.t	omp 🛛 🐗 FEMLAB	- Geom1						A漢 (▲)	¦≭ 🖉 🌿 २	≢ 2:49

1. Initialize Mesh 클릭한 후, Solve 클릭

1. 유속분포 그래프를 확인 할 수 있다.

10	FMI AR - G	ienm1/Incompressible Navier-Stokes (ns) : [[Initiled]	
Eile	Edit Option	ns Draw Physics Mesh Solve Postprocessing Multiphysics Help	
H	⊳⊎⊜ ∣∦	¥ [예·() 21 25 25 37 ¥ 1 25 (25 4 1 25 25 1 25 25 1 25 25 1 25 25 1 25 25 1 25 25 25 25 25 25 25 25 25 25 25 25 25	0.227.0.4
•		Surface: Velocity field	10 ⁻⁴
0			
		Plot Parameters	·
*	0.04	Ceneral Surface MaxMin Deform Animate	
155		Pict type	
1	0.03	Surface Solidion at time:	
·		Contour Trme:	
	0.02	Solution at angle (phase): 0 degrees	
		Lagical & Ale Sand The Inclusion	5
	0.01	Max/min marker Element nodes to fulfil expression:	
		Deformed shape	
	0	Coornetry edges	ľ.
		Make rough plots	
			3
	-0.01		
	-0.02		1
		Smoothing Title	
	0.05	OK Cancel Apply	
		0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 Min.o	
Init	tialized mesh	consists of 4732 elements.	^
Num	per of degrees ution time: 6	s of freedom: 21994 563 e	-
(0.07	(, -0.04)	EGUAL [SNAP Memory: (1	5.8 / 17.4)
-	시작 🔮	Ø 🖉 🗢 🎽 ' 월 성급화평 7.bmp 👔 (冬西太夕) 오 오	≢ 2:51

1. Plot parameter를 클릭, Plot type의 Arrow를 활성화시킨 후 OK 클릭.

1. 화살표로 표시된 유속분포 그래프를 확인 할 수 있다.

Elle Elle Options Draw Physics Meh Solve Eostprocessing Multiphysics Help Elle Elle Options Draw Physics Meh Solve Eostprocessing Multiphysics Help Inticial Ized meh consists of 4732 elements. Initial Ized meh consists of 4732 elements. Nutical Ized meh consists of 4732 elements. Nutical Ized meh consists of 4732 elements.	10 F		1 - G	enm1	/Cnnv	ection and (Conduction (ee) : [II	Intitled]										_ = ×
Image:	Eile	<u>E</u> dit (Option	s <u>D</u> ra	aw Phy	sics <u>M</u> esh	Solve Postpro	cessing	Multiphysics	Help									
Image: Control of the second state	D	i 🖬 🖉	3 ¥	e e			-\$ -\$ = ≌	🥮 🗩 .	🗩 🗣 🔍	2 26 26 ໃ	2 🔘 🔇	P 8							
0.04 -																			
<pre> 0.04 0.04 0.04 0.04 0.04 0.05 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.04 0.05 0.05 0.05 0.07 0.8 0.09 0.1 0.1 0.1 1</pre>				<															>
0.04 -	•				1	1	1	1	1	1		1	1	1	1			1	^
In the lack consists of 4732 elements. Name of degrees of freedom: 21934 Soution time: 6.563 s:	$\overline{}$		0.04	F															11
Model Navigator 0.03 - - - Space dimension: -<																			
0.03 . . . Space dimension: 20 0.02 .<	•						Model Na	vigator											
Image: Construction and Conductor Image: Conductor Image:	2		0.03	╞			Space dime	nsion:	2D		~	wallph	ysius						-
Image: Construction of the consthe construction of the consthe construction	<u>, </u>								_				Add	Remove					
Image: Construction and Co	ţ <u>ت</u>						FEMLA	3											
0.01 -	E		0.02	F				Energy bal	ance	_			 Geom1 (2D) Incompret 	ssible Navier-S	toke:				-
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 1.0111 is 1/2 and mesh consists of 4732 elements. 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 1.02360,0.0430 0.040 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12	e,							 Convert Conduit 	ction and Conduc ction	tion			Convecti	on and Conduct	tion (
0.01 Image: Comparison balance 0								Mace heler											
Initialized mesh consists of 4732 elements. Number of degrees of freedom: 21994			0.01	Ļ				Momentum Pseudo 3D	balance										-
Initialized mesh consists of 4732 elements. Number of degrees of freeden: 2194							🗷 🧰 Ele	tromagnetic	s Module										
Image: Sector may etc. Image: Sector may etc.<							🗄 🧰 Str	uctural Mech	nanics Module			<							=
Initialized mesh consists of 4732 elements. Number of degrees of freedom: 21994			0	L				usion				Depend	polication Mor	l Properties					
-001 - - Add Ceometry -001 - . Add Ceometry -001 - . . -002 - . . -003 . . . 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12			-				🗷 🧰 Ele	stromagnetic d Dynamics	58		~		pplication mod	ie Properties					
-0.01 - <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td>Add Geo</td> <td>metry</td> <td></td> <td></td> <td></td> <td></td> <td></td>								,					Add Geo	metry					
Application mode name: cc2 Procompressible Navier-Stokes (ns) -0.02			0.01				Dependent	variables:	T2			Ruling ap	plication mode	¢					
Element: Legrange - Quadratic Multiphysics -0.02 -			-0.01				Application	mode name:	cc2			Incompre	essible Navier-	Stokes (ns)	~				
-0.02 - <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Element:</th> <th></th> <th>Lagrange - Qua</th> <th>adratic</th> <th>~</th> <th></th> <th>Multiph</th> <th>iysics</th> <th></th> <th></th> <th></th> <th></th> <th></th>							Element:		Lagrange - Qua	adratic	~		Multiph	iysics					
-0.02 -																			
-0.03 - · · · · · · · · · · · · · · · · · ·			-0.02											uk Can	icel				1
-0.03																			
-UU3 -																			
Initialized mesh consists of 4732 elements. Number of degrees of freedom: 21994 Solution time: 6.563 s 00386,0.0434)			-0.03	F			-												_
Initialized mesh consists of 4732 elements. Number of degrees of freedom: 21994 Solution time: 6.563 s					0	0.01	0.02	0.03	0.04	0.05	0.	06	0.07	0.08	0.09	0.1	0.11	0.12	
Initialized mesh consists of 4732 elements. Number of degrees of freedom: 21994 Solution time: 6,563 s 0.0366,0.0434) GRID [COUAL Memory: (16.9/20.2)																			
Number of degrees of freedom: 21994 Solution time: 6.563 s Oco366,0049 Memory: (15.9/20.2) Memory: (15.9/20.2)	Init	ialized	mesh	consis	ts of 4	732 elements.													^
0.0396, 0.0434) GRID EQUAL Memory: (18.9 / 20.2)	Numb	er of de	egrees	of fr	eedom: 2	21994													
Memory: (16.9720.2)	3010		4)	ວບວຣ			01											Mamanu	(48.0.(20.2)
「秋秋日」 @ / G ²⁰ W 설명화공 10 hmn - 🦨 FEMLAB - Geom 1 🔰 🕺 🕺 🖓 グ G 255	(0.03	88,0.0434 시 조	+) (*		• »	GROD EQU/	10 hmn -	C FEMI	AB - Geomi							^	「第二〇一〇	Wemory:	(18.87 20.2) ? ⇒ 2:55
第1月7日 前本の、※ W #Bお子 10 bmp - 参FEMIAB - Geoma A 満日を広ま 216 9章 255	(0.03	86,0.0434 지자	4)	a 🖉	»	GRID EQU/	AL	- EEMI	AB - Georgi								·诺 [🖉 🔥	Memory:	(18.9 / 20.2) 2 ≅ 2.55

1. Chemical Engineering Module > Energy transport > Convection and conduction 을 선택, Add 클릭 후 ,OK 클릭.

10 F	FMLAR - G	ienm	1/Conv	ection and	Conduction	(cc): [II	ntitled]									_ 🗆 🗙
Elle	Eait Uption	ns <u>µ</u> ∀ Bhos	raw Phy main	lsics Mesn	Solve Postp	rocessing i	Myntiphysics	s <u>H</u> eip √1 ->>> ->O								
		10 H E	us [k		=		> μ [*] μ [*]	K 022 026	36 @ A v 8							
		<														>
•	0.04	L					÷									<u> </u>
	0.04				Public	main Ratti		useties e	nd Conduct							
•																
	0.03	ŀ			Equatio ∨ ц-к ∨	n 1 + z _i ni <mark>N</mark> Dij =	⊌ - pu _p ur v i	, i= temperatu	re							-
	0.02				Subdor	nain selection	Phys	ics Init Eler	nent and heat source	s/sinks						
e	0.01						Libr	ary material:	~	Load						
	0.01						Qua	antity م	Value/Expres	sion Descript Time sca	tion ling coefficient					
							•	k (isotropic)	0.62	Thermal	conductivity					
	0	L					0	k (anisotropic	997	Density	conductivity					
								C _p	4180	Heat cap	acity					
	-0.01	Ŀ						u	u	×-velocity	/					
					□ Se	lect by group	<u>~</u>	∨ h¦N _{D,i}	Y Species diffus	sion inactive 💌	Species diffe	ion				
	-0.02	ŀ			Ac	tive in this dom	ain									-
										ок	Cancel	Apply				
	-0.03	L.														
																~
			0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.11	0.12	
Init	ialized mesh	consi	sts of 4	732 elements.												^
Numb	er of degrees tion time: 6	s of f 563 ≪	reedom:	21994												
(0.02	13, 0.0396)	. 505 8		GRID EQ	JAL										Memory	: (18.8 / 20.2)
-	시작	• 6	9 💿 🐣	🛛 🗑 생물화공	10.bmp	🌍 FEMLA	AB - Geom1						F	入漢 (🔦 🛝	*215	오章 2:54

1. Physics > Subdomain Settings 선택, 값을 입력. 여기서 u, v 는 Navier-stokes 의 종속 변수.

10	FMI AR -	Gr	nm1,	/Conv	ection and	l Condi	uction	(nn) : [1]	Intitled]									_ = ×
Eile	<u>E</u> dit <u>O</u> pt	tions	: <u>D</u> ra∙	w Phy	sics <u>M</u> esh	<u>S</u> olve	Postpr	ocessing	Multiphysic	s <u>H</u> elp								
	2 🖬 🕾	1	82 6	8		=\$ =\$	= 🗎	🦃 🗩 .	ا 🛧 🔍 🤉	න නො	ດ 🔘 🚱 🐧	2						
		Į	<															>
•		~		·								'						^
1	0.	.04	-															1
						S	ubdon	nain Setti	ngs - Cor	nvection a	nd Conduct	ion (cc)						
							Equation											
6	n	03	-				∨ц-к∨	+ ≥ _i n _i n _i n =	i la - p⊂ _p u · v i	, i= temperatu	e							1
Tetat						L												
							Subdom	ain selection-	Phys	sics Init Elem	ent							
10	0.	.02	-						Mai	riable Initial	usluo	Deecrie	ation					1
									T(t,	300	vulue	Temper	ature					
	0.	.01																
		0	-															1
	-0.	.01	-	1					~									1
							Sele	ct by group										
							a noti	us in this day	-									
	-0.	.02					V Acti	ve in this dom										-
												ОК	Cancel	Apply				
	-0.	.03	-	•							•						•	
		L		0	0.01	0.0	12	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.11	0.12	
				0	0.01	0.0	-	0.00	0.04	0.00	0.00	0.01	0.00	0.00	0.1	0.11	0.12	
Init	ialized me	sh c	onsist	s of 4	732 elements													^
Numb	er of degn	rees	of fre	edom:	21994													
3010	72 0.03985	0.5	03 8		GRID FC		_										Mamoria	× (18.3 (20.2)
	시 작	6	0	• •	생생물하	SOAC B 10 bm	o	C FEML	AB - Geomi							注意		· (16.5720.2) 오言 2:56
		-	6.	<u> </u>	C CEN	5.0.0		- Contra	aconn								~~ /2	

1. Init탭에서 T(t0)에 300 입력, OK클릭.

10		1 – G	enm1	/Conv	vection and	Conducti	nn (cc) : [II	ntitled]									_ = ×
Elle	Ean L Cal DI A	_ption ⊒al ⊻	s <u>⊔</u> ra ⊡no í	en In	⊻sics Mesn	501ve Pos	stprocessing i	Villitiphysics	tteip ∕¶ vån 2000								
		-						~ " ~ "(K 052 046 35	• • •							
			<								1						>
•				1	1	1	1	1		1		1	1	1	1	1	<u>^</u>
\square		0.04	-														-
•																	
2		0.03	-			· · •						-					-
ie:							Boundary	Settings -	Convection	and Cond	uction (cc						
		0.02	-				T = T ₀										-
Ľ							-Boundary sel	ection	-Boundary con	ditions							
		0.01		_			4 		boundary con	alloris							
				Î			6		Quantity	Value/E	pression D	escription					
							7 8		9 ₀ Т _о	325	T	emperature					
		0					9 10									>	1
							Select by	group									
		-0.01	-	•			Interior b	oundaries									-
										ок	Cancel	Apply	נ				
		-0.02	-														-
		-0.03	Ļ														-
																	~
				0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.11	0.12	
Init	tialized	mesh	consis	ts of 4	732 elements.												^
Numb So tu	per of de ution tim	erees	offn 563 s	eedom:	21994												
(0.06	02, -0.018	33)			GRID EQ	JAL										Memory:	(19.7 / 20.2)
-	시작		9 🟉	🕑 👋	👹 생물화공		🌍 👘 FEML/	AB - Geom1,						Α	漢 🔇 🛋	* 🖉 💋	2章 2:58

1. Physics > boundary Settings 선택, 값을 입력, OK클릭

10 P		R – Gr	enm 1	/Conv	vection and	Conductio	n (cc) : [1]	ntitled]									_ = ×
Eile	<u>E</u> dit !	Options	s <u>D</u> ra	w Ph	⊻sics <u>M</u> esh	Solve Post	processing	Multiphysics	delp								
Dı	i 🖬 🖉	∰ %				-\$ -\$ - \$	≧ 够 🗩 ,	₽₽\$₽ ₩	Ω Ω6 Ω6								
		ļ	<)						>
•				· ·													^
1		0.04	-		-												1
f		0.03	-														1
						Progr	ess - Solv	e Problem									
Ē		0.02	_						Matrix f	actorization							
ie,		0.02							Matrix	actorization							
		0.01	_			Progre	SS Log										
		0.01		1		Desc	ription	Progr	ess Conv	ergence Parar	neter Value	•				1	
						Nonlin	ear solver	10 %	4.65e	-14 Step	1		Stop				=
			_			UMEP	ACK	56 %		Step	89		Stop				
		-											Stop			-	
		-0.01	_														
							e eutometicelly						Cancel				
							se datomatically					L	cancer				
		-0.02	_														
		-0.03	-														-
																	~
				0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.11	0.12	
blook			-6 6		21004												
Solu	ner or de ntion tim	egrees me: 6.5	огт 563 s	eeuom:	21334												^
Numb	er of de	egrees	of fr	eedom:	31738												~
(0.04	34, 0.040	6)			GRID EQU	JAL			-						_	Memory	: (17.4 / 20.9)
2	시작) 🖉	📀	谢 생물화공	13,bmp	🌍 FEML/	AB - Geom1						A	∖漢「��♪	* 🖉 🎽	오후 2:59

1. Restart 클릭. 앞서 계산한 유체를 초기값으로 계산하여 유체와 열을 동시 에 풉니다.

1. 초기값으로 설정된 유체에 대한 온도 분포 그래프를 확인 할 수 있다.

10	🗴 FEMLAR - Geom1/Convection and Conduction (cc) : [Hotifled]										
Eile	Edit Option	ns Draw Physics Mesh Solve Postprocessing Multiphysics Help									
			2276.4								
•		Sarrade: Velocay liea Arrow, Velocay liea Arro	.10 ⁻⁴								
0											
		Plot Parameters									
*	0.04	General System Animate									
1456											
1	0.03										
•		Predefined quartilities: Temperature (cc)									
		Vismath									
	0.02										
		Height data									
	0.01	Predeminer quartites: Velocity field (ns)									
		Coloring Interpolated V Filled V									
	, i	Surface color									
		Octormap: jet ♥ Colors: 1024 ♥ Color scale									
	-0.01	O Uniform color: Color									
	.0.02										
	-5.02										
	0.09										
		OK Cancel Appry									
		0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 100									
Sel	ution time: F	EP2 a	-								
Num	ber of degrees	sou s of freedom: 31738									
Solu	ution time: 8.	.313 s	~								
(0.03	8,0.05) 시작 (I EQUAL ISAP I Menoy (2	4.5727.1) ≋ 3:01								

1. Plot Parameters를 클릭하고, 앞에서 설정한 Arrow를 비활성 한 후, Predefined quantities에 있는 Convection and Conduction (chcc) > Temperature 선택.

1. 온도분포 그래프를 확인 할 수 있다.

- 1. Multiphysics > Model navigator 을 선택.
- 2. Chemical Engineering Module > Mass Transport > Convection and Diffusion 을 선택.
- 3. Dependent variables에서 c_A 입력, Add 클릭, OK클릭.

% F	F II AB - G	enr I/Convectio	n and Diffus Mach Salua	inn (cd) : [lln Restaressing	titled] Multiphysics	Holp							
		szend Settings	Licon Done			 2∂ΩΩΩ@	8						
	<u> </u>	nstants			1	Su ace: Tempera	ture						Max: 325
٢	Exi	pressions	ables .	Scalar Expressi	ons							>	325
◎ ※ ※ 二 ·	Ext Pro Eur Co Ma Cre Vis	rusion Coupling Vari jection Coupling Vari ottions ordinate Systems terial Library terial Library oo Ecotion Library ualization/Selection	ables) ables) Settings	Boundary Expre Boint Expressio	ssions ns								320
	Su	opress											
	Lat	oels	•										
	0.01	ferences											315
						C	-						
	0												310
	-0.01												
	-0.02												305
	-0.03												
		0 0.0	1 0.02	0.03	0.04 0	0.05 0.06	0.07	0.08	0.09	0.1	0.11	0.12	300
Solu Numb Solu	tion time: 6. er of degrees tion time: 8.	563 s : of freedom: 31738 313 s											Min: 300
(0.04,	0.05)		EQUAL SN	AP		_							Memory: (23 / 29.1)
2	시작 (9 🖉 📀 👋 🕅	병물화공 18.bm	р 🧊 🚳 FEM	LAB - Geom1						A	Ĕ [◇毗☆ /	🖋 오章 3:06

1. Option > Expressions > Scalar Expressions 선택.

1. Scalar Expressions 선택한 후, 활성화 에너지, 반응열, 반응속도 상수 등의 값을 입력, OK클릭

10	FEMLAR - (Senr	n1/Conv	ection and	Diffusion	(c.d) : [Hnti	iled]									
Eile	Edit Optio	ns [2raw Phy	sics <u>M</u> esh	Solve Po	stprocessing	Multiphysic	s <u>H</u> elp								
	- 4	ж щ			=*=	≌ 🗶 🕫 .	🖻 🏲 🎋	Ω 226 226 🕅	© <> ¥							
R				/ <u>∧ ine l</u>	/lesh F											
<u>يو ا</u> ر		<	-	1				1	1	1	-			1		>
Ż	0.04	ŀ														-
					_											
•						ubdomain S	ettings -	Convection	a d Diffusi	on (cd)						
É	0.03															1
1						∇ (-D∇c_A) = F	-u -⊽c_A, α	c_A = concentratio	n							
	0.02	ŀ	-			Subdomoin color	tion									-
ie,						1		C_A Init Eleme	ent			-1				
								Library material		Load						
	0.01	ŀ						Quantity	Value/Expr	ession Descr	iption					-
								å _{ts}	1	Time s	caling d efficie	ent				=
								 D isotropic 	2e-9	Diffusi	on coet cient					
	· · ·	Γ						🔿 D anisotrop	ic 1001	Diffusi	on coet cient					11
								R	-rate	Reaction X-velo	on rate					
	-0.01	ŀ	-			Select by an				v.velo	-itu					-
						Active in this	domain	Artificial Diff	usion							
					l											
	-0.02									OK Can	el App	ly				-
					_											
	-0.03	L														-
																~
			0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.11	0.12	
Solu	ution time: 6	.563	s													^
Numb	er of degree tion time: 8	s of 313	freedom: (c	31738												-
(0.02	74, 0.0345)	. 513		GRID EQ	JAL			-							Memory:	(25.3 / 29.1)
-	시작	© (9 🕑 🐣	😈 생물화공	} 20,bmp −	. 🔰 🍏 FEML	AB - Geom	1					F	、漢「🔷 🖪	*215	오후 3:11

1. Physics > Subdomain Settings 선택, 값을 입력.

10 F	FMI AR	- Gr	enm1	/Conv	ection and	Diffusion	ed) : [Until	tled]									_ 🗆 🗙
Eile	Edit Op	otions	s <u>D</u> ra	w Phy	∠sics <u>M</u> esh	Solve Pos	processing	Multiphysics	Help								
	- H -	8 do	42 (🖪 🕼		=(=(=	≌ ⊘ ⊅,	🗢 🖻 🏕 🛛	¥ 9Ω [92] 22	🔘 🚱 🧏							
		[<	-)						>
•		104	_														_
\leq	, i																1
												_					
Í			-			· · ·											1
1:57							Boundary	Settings -	- Convectio	n and Diffu	sion (cd)						
Ē			_														
e		5.02					n 1N = 0; N =	-D⊽c_A+c_A	U				- ·				11
							-Boundary s	election	-Boundary on	nditions							
							4	~	Boundary o	andition: loculati	on Symmetry						
	u	5.01	-	\uparrow			5		Quantity	Value/	Expression	Description				1	
							7		c_A ₀	0		Concentration					=
							8	=	No	0		inward flux					
		Ĩ	-				9 10										11
							Select k	by group									
							Interior	boundaries									
	-0		-										- ·				11
										ок	Cancel	Apply					
	-0	5.02	-														11
	-0	5.05	-														~
				0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.11	0.12	
Solu	tion time:	: 6.5	563 s		01000												^
Solu	er of degr ition time:	rees : 8.3	տ քր։ 313 s	36000 ;	31738												-
(0.02	74, 0.0304)	. 510			GRID EQ	UAL										Memory:	(25.8 / 29.1)
-	시작	C	10	🕑 👋	谢 생물화공	≩ 21,bmp	🔹 🕼 FEML/	AB - Geom1,						Α	漢(会感	*218	2章 3:16

1. Physics > boundary Settings 선택, 경계조건, c_A0등 값을 입력.

10 F	FMLAR – G	enm1	/Conv	ection and	Diffusion (nd) : [Unti	tled]									
Eile	Edit Option	s <u>D</u> ra	aw Phy	∠sics <u>M</u> esh I∧∧∧∣	Solve Post	orocessing	Multiphysics	Help								
	≠ ⊟ ⇔ ∣∂		B k		= = = = =	= 👐 🔎 . Memory: -	Ø₽ % " %	002 002 22	S 🐴 🤱							
					1					3)						
•		<u> </u>	-			1	1		1		1	1		T		_
~	0.04	F														-
•																
É	0.03	F							1							1
运					Progr	ess - Solv	e Problem									
	0.02	F						Assembl	ing matrices							
e						•										
					Progre	ss Log										
	0.01	F	\uparrow		Desc	iption	Prog	ress Conv	ergence Para	meter Valu	ie				7	-
					Nonlin	ear solver	10 %	4.35e-	14 Step	1		Stop				=
	0	L			Arret	nbly	29 %					Stop				
												Stop				
	-0.01	╞	÷													
					Clos	e automatically	·					Cancel				
	-0.02															1
	-0.03	F														-
			-							0.07		0.00				~
			0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.11	0.12	
Numb	er of degrees	of fr	eedom:	31738												^
Solu Numb	ition time: 8. ⊨er of desrees	313 s of fr	eedom:	41482												
(8.43	1e-3, 0.0418)			GRID EQL											Memory	: (26.7 / 29.1)
-	시작 🥚	9 🖉	📀 🎽	🛛 🗑 생물화공		🌀 FEML	AB - Geom1						l	、漢「��	* 🖉 😼	오후 3:17

1. Restart 클릭.

Ele Edit Options Draw Physics Mesh Solve Bostprocessing Multiphysics Help C C C C C C C C C C C C C C C C C C C	💔 FFMLAR - G	Seom1/Convection and Diffusion (cd) : [Untitled]	
Surface Surface Nex: 1196.335 Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface Image: Surface	Eile Edit Option	ns Draw Physics Mesh Solve Bostprocessing Multiphysics Help V Base III. A A A 4 4 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	
0.04 Plot Parameters 1000 0.03 General Surface Contour 9000 0.02 0.03 Predefined quantities: Concentration, c_A (cd) Range 9000 9000 0.01 Predefined quantities: Velocity field (rs) Vision of the system 9000 9000 0.01 Coloring and fill Vision of the system Vision of the system 9000 9000 0.01 Surface color Vision of the system Vision of the system 9000 9000 0.02 Vision of the system Vision of the system 9000 9000 9000 0.01 Surface color Vision of the system 9000 9000 9000 0.02 Vision of the system Vision of the system 9000 9000 9000 0.01 Vision of the system Vision of the system 9000 9000 9000 0.02 Vision of the system Vision of the system 9000 9000 9000 0.03 Vision of the system Vision of the system 9000 9000 9000 0.04 Vision of the system			1196.335
Image: Pion Parameters Image: Pion Parameters <td>۵</td> <td></td> <td></td>	۵		
0.04 0.03 0.02 0.03 0.04 0.05 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.01 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.09 0.01 0.02 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.09 0.01 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.09 0.01 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.09 0.01 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.06 0.07 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09		Plot Parameters	
0.03 0.03 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.09 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.09 0.01 0.02 0.03 0.04 0.05 0.05 <td>sits 米 0.04</td> <td>treamine MaxMin Deform Animate</td> <td>000</td>	sits 米 0.04	treamine MaxMin Deform Animate	000
Image: Surface color 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.09 0.01 0.02 0.03 0.04 0.05 0.05 0.05 0.06 0.07 0.07 0.08 0.09 0.09 0.09 0.01 0.02 0.03 0.04 0.05 </td <td>0</td> <td>General Surface Contour</td> <td></td>	0	General Surface Contour	
0.02 Predefined quartities: Concentration, c_A (cd) Predefined quartities: Velocity field (ns) Predefined quartities: Velocity field (ns) 0.01 Predefined quartities: Velocity field (ns) Predefined quartities: Velocity field (ns) Predefined quartities: Velocity field (ns) 0 Predefined quartities: Velocity field (ns) Predefined quartities: Velocity field (ns) Predefined quartities: Velocity field (ns) 0 Surface color Colorings: Velocity field (ns) Predefined quartities: Velocity field (ns) 0 Surface color Colorings: Velocity field (ns) Predefined quartities: Velocity field (ns) 0 Surface color Colorings: Velocity field (ns) Predefined quartities: Velocity field (ns) 0 Surface color Colorings: Velocity field (ns) Predefined quartities: Velocity field (ns) 0 Surface color Colorings: Velocity field (ns) Predefined quartities: Velocity field (ns) 0 Surface color Colorings: Velocity field (ns	1 1 0.03	Surface phd	
0.02 0.01 0.01 Image: Coloring and fill etyles 0.01 Image: Coloring and fill etyles 0.01 Image: Coloring and fill etyles 0.02 Image: Coloring and fill etyles 0.03 Image: Coloring and fill etyles 0.04 Image: Coloring and fill etyles 0.05 Image: Coloring and fill etyles 0.06 Image: Coloring and fill etyles 0.07 Image: Coloring and fill etyles 0.08 Image: Coloring and fill etyles 0.09 Image: Coloring and fill etyles 0.01 Image: Coloring and fill etyles 0.02 Image: Coloring and fill etyles 0.03 Image: Coloring and fill etyles 0.04 Image: Coloring and fill etyles 0.05 Image: Coloring and fill etyles 0.05 Image: Coloring and fill etyles <td>· .</td> <td></td> <td>300</td>	· .		300
0.012 Image: Coloring and fill		Protection A State Sta	
0.01 Image: Coloring: Interpolated Image: Coloring: Coloring: Image: Coloring: Image: Coloring: Image: Coloring: Image: Coloring: C	0.02		00
0.01 Expression:		Predeficient countries: Velocity field (cos)	
.0.01 .0.01	0.01	Expression: U_ne	100
0 -0.01 -Coloring: interpolated in Fill etyte: Filled in Filled interpolated inte		Coloring and Till	.00
-0.01	0	Coloring: Interpolated V Fill etyle: Filled V	
-0.01		O colorman let ♥ colors cole	200
	-0.01		
)
-0.02	-0.02		
			200
OK Cencel Apply		OK Cancel Apply	
			400
6 0.01 0.02 0.00 0.00 0.00 0.00 0.09 0.1 0.11 0.12 Min: -428.17		6 0.01 0.02 0.03 0.04 0.03 0.00 0.07 0.06 0.09 0.1 0.11 0.12 Min: 4	428.17
Solution time: 8.313 c Mumber of descress of freedma: 41482	Solution time: 8 Number of degree	.313 s s of freedom: 41482	^
Solution time: 20.547 s	Solution time: 20	0.54? s	~
(003) 005 [EQUAL 2] MAP Memory (24.5/304)	(0.03, 0.05)	EGUAL SNAP Memory (2 例 / 句 》 11 世界計畫 23 hmn - 一 介 FEMI 48 - Geoma	24.5/30.4) ≅ 3:19 -

1. Plot Parameters를 클릭하고, Convection and Conduction (chcc) > Concentration, c_A0선택, OK클릭.

1. Plot Parameters를 클릭하고, 앞에서 설정한 Arrow를 비활성 한 후, Predefined quantities에 있는 Convection and Conduction (chcc) > Temperature 선택.