Theory of Finite Element
Method (FEM)
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using the weak formulation.

The first step in developing the weak formulation is to assume a weight
function and a trial function. Take U/{x) as the trial function and ¢(z) as
the weight function. We discuss the exact forms of these functions later.
The trial function U(z) forms a solution to the ODE. Therefore, if we
substitute U(z) in (22), the resulting equation gives the residual:

H=IF%+4U-EIE. .



Subsequent steps really amount to the minimization of this residual. The
minimization process starts by evaluating the weighted residual. To evaluate

the weighted residual, multiply (24) by ¢{x) and integrate over the domain
(iLe. 0 <z < w/4).
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Using integration by parts. one can simplify above equation to obtain

w/fd wfd
R{:]:fu (4¢U—ﬁﬁ)ﬁ-ﬂjﬂ dxdz .

To advance further we need to make some crucial assumptions. Since we are

free to assign any function to U(z) and ¢(x) as far as they agree with the
boundary conditions, we assume U(x) = ¢(x). This is known as Galerkin's

method. If U(x) # ¢(x), then it gives the Rayleigh-Ritz formulation. We

have to select an algebraic function of z to satisfy the boundary conditions
w(0) = w({w/4) = 0.

p(x) = U(z) = $(x) = wpy +uspp + -+ +unpn = ) witpi

We assume N functions as follows.
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This selection satisfies the boundary conditions regardless the number

of terms included in the series. Since /{x) = ¢{z), the weighted residual
becomes

Therefore we have

oy 31+ 1 2 1
R(u;}) =2 jug | = T — - — =
() Z“‘“J(-f.) (:+;+1 !+j+2+t+_’.'+3)

1 (:l_r)”iﬂ( ij 2 +i+j+(t‘+l}|(j+1})
itj—1 it] itj+1

4
ey 1 1 e
*EZ""G) (i+3_i+4)‘ LDhead o LA

Then we minimize the residual by taking derivatives of R w.r.t u;. For
predetermined number ¥, this results in NV algebraic equations that have
to be solved simultaneously.



dR(w) _
du;

For N = 2 there are only two unknowns; u; and us. It produces two linear
equations.

0.122u + 0.048us = —0.120.
0.048u; + 0.033u; = —0.063.

0.122 0.048] [u | [ -—0.20
0.048 0033 |ux| | —0063["

It resembles the general form

In matrix form

[Kl{u} ={L},
uy = —0.554579 .
ug = —1.112560.

Therefore the solution to (22) is
— _MEE v - I AL
u(z) = —0.554579z ( ; :c) 1.11256z (‘1 a:)



If we go one step further by assuming N = 3, then we get three
braic equations with three unknowns; u,, us and uz. The resulting 1

equation is
0.1216 0.0477 0.0228 ) —-0.120
0.0477 0.0328 0.0200 ug » =< —0.630 > .

0.0228 0.0200 0.0139 Uy ~0.351

uy = —(.588, uy = —(1.838, us = —0.349.

Therefore the new solution for (22) becomes

u(z) = 0588z (7 — ) — 08382 (3 - z) — 0.3492 (j— —:1:)



Axial heat transfer along an
iInsulated rod

il dT
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k=3.3J/°Cms,
@ = 10 J/sm
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Step 1. Variational formulation

This PDE is the strong form of the equation for heat conduction within a
cylinder. The first step in FEM is to derive the weak form of the equations.

fulw[é(ﬁr%)+q]d¢=ﬂ.

Integrating by parts (using the divergence theorem in 1-D) we obtain

i i 1 1
dw dT dl
From heat transfer theory, Fourier's law gives the heat flux across a unit
cross section is given by Fourier's law g = -—k%. Therefore,

1 dw dT 1



Step 2. Discretization and choice of polynomials

It is obvious that we are going to use 1-D elements. We can have simplex el-
ements for simplicity, i.e. linear polynomials to approximate the unknowns.

T'=a+bx
1;=a+ bx;,
T) = a+ bz;. fv— T
Solving for a and b gives p,r_fu -y
N W
a= %{Ta:::_r — Fme ], | '__,-s"‘f o ‘T_. "
4 X
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b= (15 =T, ‘

!
. 1 1 :
T* = I{ﬂ':j —2)T; + I{;:-: — ;) T;

N; and N; are known as the shape functions .
‘ T = N.T. 4+ N.T.
Ni=latz=z;and N;=0at = ==x,. N"Ii ' NJTJ
Ni=latz=xz,and VN; =0at z = z;.
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If we consider the first element there are two local shape functions: N
which is associated with node 1 and N associated with node 2. For the
second element again we have a local shape function associated with node
2 defined as N3. Each global shape function is zero elsewhere except in
the elements associated with the corresponding nodes. This enables us to
define the global temperature variation.

N
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Step 3. Assembling the element equations to form the global problem
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In the minimization process we differentiate Ip(7T) w.r.t. each T; and set

each derivative to zero. This procedure generates a number of equations
equal to number of nodes.

*i AN, dN, i dNy dNs
——Nds+ | ————2Tds
£ dr dz ' . dr dz °
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1 f — 1 STydz + f _id_“n
- dr dx

Likewise, there will be three more equations. In matrix form it gives the
stiffness matrix.
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The compact equation is [K|{z} = {L} where F = f, + f;. The column
matrix fj, containg the boundary terms and f; contain the source terms. x
is the vector of unknowns (nodal temperatures in our case). Components
in L, f; and f, have to be evaluated elementwise.



Step 4. Numerical manipulation

As we formulated the global problem in Step 3, the rest is down to matrix
manipulation to evaluate the unknowns. As the first step we have to eval-
uate the components Ky, of stiffness matrix K. K,, corresponds to node
1. Therefore N{ and N3 are the only nonzero global shape functions.

035 N} dN}
Ky = i . e
11 ﬁ e =

p 1 1

.33 1 1
dN; dN
12 ﬁ dr

i X 1 1 1
= i — d.:r =— '-'1
E - ( 0.33) ([].33) 0,

Kia=K;4=0.




In evaluating terms in the second row we immediately make use of the
symmetry of the matrix.

H21 = le = _I[:'-

Upon evaluating the K33 we run into a problem — which shape function
to use N3 or N3? The solution is simple. Since those two functions are
defined over two elements, we have to integrate relevant function over the

appropriate element considering the limits from 0 to 0.66 (or more generally
21).

R [l [ AN [ A 0
0

. f:_m 13 (53s) (53s) %+ /::3 (1) (‘ﬁ) .

= 20.




K33 involves functions defined only over the second element. Hence N and
N; are to be considered.

% AN3 dNg
0.33 dr dzx
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K34 = 0 since N4 does not share node 2. K3 = 0 according to the same
line of reasoning. K33 = K33 = —10 and K34 is to be evaluated in the same
manner we evaluated Koy, Again K43 = K43 = 0 as the shape functions
do not share the node in question. K43 = K34 by symmetry. K33 and Kyy
are to be evaluated in the same way we evaluated the Kj,, considering the
relevant shape function over the relevant domain. The completed stiffness
matrix is given below,

Ko =




10 -10 O g ]

-10 20 -—-10 O
0 =10 20 -10
0 0 -10 10

This is the famous tridiagonal matrix in FEM. In this case it is only 4 x 4
since we have only four nodes. With full modeling, one would get a huge,
sparse matrix of few thousands of components, yet still banded.

The next step is to evaluate the components in f, and f;. In evaluating
the terms in f}, it is important to identify only Ny and N4 remain nonzero at
t=0and xz=1. Infact Ny = Ny =1at z=0and x = 1. All other shape
functions are zero as far as start and end points are concerned. Therefore

qﬁl E - dz=0 !
gNa|g 0
fo =~ | il =
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oNul3 | | -1.25]



In computing the terms in f,, the integrals are to be evaluated taking into

consideration where the global shape functions are defined.
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