Advanced Engineering Statistics - Section 5 -

Jay Liu Dept. Chemical Engineering PKNU

Design of Experiments

• What we will cover

Reading: http://www.chemometrics.se/index.php?option=com_content&task=view&id=18&Itemid=27

2012-05-31 공정 모형 및 해석**,** 유 준**© 1**

Fathers of Modern Experimental Design

Sir Ronald A. Fisher (1890-1962).

- Statistician, evolutionary biologist, eugenicist and geneticist.
- Credited with ANOVA and DOE
- *The Design of Experiments* (1935)

George E.P. Box, Professor Emeritus (1919~)

- Founder of Stat Department @ Univ. of Wisconsin, Madison
- DOE and RSM
- Famous quote: "Essentially, all models are wrong, but some are useful".

Usage examples

- ◆ Colleague: 8 process variables seem to affect melt index. How to narrow them down? Which one has most effect on y?
- \rightarrow Engineer: 3 manipulated variables of interest; how to run the experiments?
- Manager: how do we analyze experimental data to optimize our process?
- ◆ Colleague: small changes in the flowrate lead to unsafe operation. Where can we operate to get similar results, but more safely?

Why design?

- 1. Ensure adequate variability in all key variables.
	- Variable *x* may have very important effect on process performance.
	- But if variation in it is small relative to noise level, then may
		- Accept H_0 : effect of $x = 0$
		- Obtain confidence interval on effect of *x* to include zero.
	- This does not necessarily mean that effect of x is not important only that it isn't large enough in this particular data set to detect significance.
	- Design of experiments provides a form of guarantee that accepting H_0 implies that the effect is not important.

Why design?

- 2. Ensure identifiability of all important effects & *interactions*
	- DOE helps ensure that all important main effects and interaction can be identified – minimizes confounding
	- Our bad experimental habits arise from the nature of university laboratories:
		- These undergrad labs aimed at demonstrating theoretical principles, not a building models, exploring for unknown effects, or optimizing processes.
		- Ex. Demonstrate the effect of temp. on reaction equilibrium changing temp. holding all other variables constant!
	- COST approach is not good when searching for effects, building models, or optimizing processes.

[FYI]Changing One variable at a Single Time (COST)

◆ We can hardly find values of conc. & temp. for max. yield using COST approach

→ DOE: efficient ways of changing many variables at once

 $2012-05-31$ 6

Why design?

3. Maximize the information obtained in fewest number of experiments

- Examples of industrial screening experiment
	- Problem: in a new plant the cycle time in the filtration section was unacceptably long.
	- Need to de-bottleneck
	- Many factors suggested that might be responsible.
	- How to screen out important ones in fewest runs possible?
- 4. Distinguish between causality and correlation
	- Data from Australia over many years on
		- # of Baptist minister vs. amount of liquor consumed
		- Strong correlation? Causal effect?

Why design? (in plain words)

• The objective of experimental design is **to relate independent variables to dependent variables as efficiently as possible** (i.e., fewest number of experiments).

- Two general types of experimental design:
	- *Screening*–Define the important variables or "Main effects". (through Factorial design, fractional factorial design, …)
	- *Empirical modeling*–Develop approximate models of true systems for further use. (Response surface method, …)

Analysis of effects of a single variable at two levels

- ◆ Simplest case:
	- \rightarrow catalyst A vs catalyst B
	- \rightarrow low RPM vs high RPM
	- \div Etc
- \rightarrow Measure n_A value from setup A
- Measure $n_{\rm B}$ values from setup B
- \rightarrow Hold all other variables constant (control disturbances)
- \rightarrow Two ways to answer this:
	- \rightarrow Comparing means of X and Y
	- Least squares

Using confidence interval of $\bar{X}-\bar{Y}$

→ Test for difference

$$
s_p^2 = \frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{n_A - 1 + n_B - 1} \qquad \frac{\left(\overline{X} - \overline{Y}\right)}{\sqrt{\frac{s_p^2}{n_A} + \frac{s_p^2}{n_B}}}} \sim t_{n_A + n_B - 2}
$$

→ Confidence interval

ence interval
\n
$$
\left[(\bar{X} - \bar{Y}) - t_{n_A + n_B - 2, \alpha/2} \sqrt{\frac{s_p^2}{n_A} + \frac{s_p^2}{n_B}}, (\bar{X} - \bar{Y}) + t_{n_A + n_B - 2, \alpha/2} \sqrt{\frac{s_p^2}{n_A} + \frac{s_p^2}{n_B}} \right]
$$

Using least squares

- \rightarrow The same result can be achieved using least squares: $y_i = a_o + a_i d_i$
	- d_i = 0 for A; d_i = 1 for B; y_i : the response variable

EXAMPLE : Etch rate of solutions 1 & 2

Engineers @ a semiconductor manufacturing plant want to know which solution has higher etching rate.

2012-05-31 공정 모형 및 해석**,** 유 준**© 11**

Using least squares (cont.)

→ C. I approach

$$
(\overline{x}_1 - \overline{x}_2) - t_{\alpha/2, n_1 + n_2 - 2}(s_p) \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \le \mu_1 - \mu_2 \le (\overline{x}_1 - \overline{x}_2) + t_{\alpha/2, n_1 + n_2 - 2}(s_p) \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}
$$

(9.97 - 10.4) - 2.101(.340) $\sqrt{\frac{1}{10} + \frac{1}{10}} \le \mu_1 - \mu_2 \le (9.97 - 10.4) + 2.101(.340) $\sqrt{\frac{1}{10} + \frac{1}{10}}$
- 0.749 $\le \mu_1 - \mu_2 \le -0.111$ **Zero included?**$

LS approach

 \rightarrow Find a LS solution in the model: $y = a_0 + a_1 d$

$$
\blacklozenge d_i = \text{o for 1; } d_i = \text{1 for 2; } y_i \text{ : etching rate}
$$

S.E L.B 95% value t statistic P-value U.B 95% a₀ 9.97 0.107523 92.72469 $1.41E - 25$ 9.744103 10.1959 0.15206 2.827832 0.011151 0.110534 0.749466 $|a1$ 0.43

Confidence intervals of $a_0 \& a_1$

Zero included?

Same result and more (**significance test + prediction model**)

Several concepts in DOE

- Randomization and blocking
	- Comparative experiment: effect of two methods on strength of rubber strip

and do significance test (C.I of $\overline{X}_A - \overline{X}_B$) or least squares($y_i = a_o + a_i d_i$) ….. Any problem with this?

• What if strip of rubber had variation along its length?

Then, $\bar{X}_A - \bar{X}_B$ might just be reflecting this difference.

• One solution \rightarrow randomize allocation of rubber portion to methods (A&B)

Concepts in DOE - Randomization and blocking

• Suppose we expect variation in rubber to be progressive along length of the strip! Then, two different adjacent portion will be much more similar than two distant ones.

→ **block into pairs** of adjacent pieces. Assign methods (A&B) randomly within block .

And only compare within block

Blocking can remove effect of possible uncontrolled variations along the length of strip (**remember advantage of paring**)

Designs for experimental studies

※Objectives

• Screening studies

: discovering which of a large number of variations affect response

• Empirical model building studies

: true model unknown. Use approximate models, $y = f(x_1, x_2, ..., x_k)$

2 k factorial designs

 x_2

*x*1

2 2 factorial design

We will use this system for our example.

2012-05-31 공정 모형 및 해석**,** 유 준**© 16**

- 2 2 factorial design (Cont.)
- \rightarrow This is the true surface plot

- 2 2 factorial design (Cont.)
- Two independent variables:

Study effect of T & S on conversion *y* (%).

Main effects of T & S

Almost no difference between the values within each main effect (see interaction plot)

BTW, where would you run your next experiment(s) to improve yield?

2012-05-31 공정 모형 및 해석**,** 유 준**© 19**

- Interaction between T & S
	- **→** Do variables T & S act independent on *y*?
	- \rightarrow Or, is effect of T (or S) same at both levels of S (or T)?
	- \rightarrow If effect is different \rightarrow T x S interaction.

Visualize this with an interaction plot.

Consider another case →

\rightarrow Main effects of T & S

- Main effect of $T: 5\%$ per 10K
	- \triangleright $\Delta T_{S+} = 8\%$ per 10K
	- \triangleright $\Delta T_{S-} = 2\%$ per 10K
- Main effect of S: 7% per $0.75g/L$
	- $\Delta S_{T+} = 10\%$ per 0.75g/L
	- \triangleright $\Delta S_{\tau-} = 4\%$ per 0.75g/L
- ◆ There was an important phenomenon that we did not capture with the main effects alone.

2012-05-31 공정 모형 및 해석**,** 유 준**© 22**

- 2 2 factorial design (Cont.)
- Interaction between T & S

- \blacktriangleright Lines not parallel
- \blacktriangleright Implies there is an interaction
	- In this case, interaction between T and S
	- ► called the $T \times S$ interaction
	- \triangleright it is a 2-factor interaction

- \rightarrow Back to the 1st example (little interaction)
	- Design matrix (condition) & experimental results

※Center: usually current condition

 \rightarrow Transform *x* variable (T & S) to scaled variables

※why?: remove scale effect

$$
x_{i} = \frac{\text{variable} - \text{centerpoint}}{\text{Range}/2}
$$
\n
$$
x_{1} = \frac{T - 346}{8}
$$
\n
$$
x_{2} = \frac{C - 1.5}{0.25}
$$
\n
$$
x_{3} = \frac{1}{1} + \frac{1}{1} = \
$$

공정 모형 및 해석**,** 유 준**© 2012-05-31 24**

► Fit model:
$$
y = a_0 + a_1x_1 + a_2x_2 + a_1x_1x_2
$$

Interaction term

- \rightarrow four parameters & four data points
- \rightarrow Zero D.O.F (no C.I possible)

 $y = a_0 + a_1 x_1 + a_2 x_2 + a_1 x_1 x_2$

In matrix-vector notation, $y = Xa$

 \rightarrow Regression coefficients (usually from S/W)

$$
\mathbf{a} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}
$$

Columns of **X** : orthogonal (i.e., $\mathbf{x}_i \cdot \mathbf{x}_j = \mathbf{x}_i^T \mathbf{x}_j = 0$) $\mathbf{x}_i \cdot \mathbf{x}_j = \mathbf{x}_i^T \mathbf{x}_j = 0$

$$
\mathbf{a} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}
$$

Columns of **X** : orthogonal (i.e., $\mathbf{x}_i \cdot \mathbf{x}_j = \mathbf{x}_i^T \mathbf{x}_j = 0$)

$$
\Rightarrow \sum x_0 x_1 = \sum x_0 x_2 = \sum x_0 (x_1 x_2) = \sum x_1 x_2 \sum x_1 (x_1 x_2) = \sum x_2 (x_1 x_2) = 0
$$

 a_i = effect of changing variable x_i from 0 to +1.

공정 모형 및 해석**,** 유 준**© 2012-05-31 27**

- \rightarrow Confidence interval of a_i
	- Four data points & four parameters: D.O.F is zero
	- **→ Can't calculate C.I unless**
		- $\rightarrow \sigma$ is known
		- \rightarrow S can be calculated from replicates (or historical database)

$$
var(\mathbf{a}) = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \sigma^2 \Rightarrow var(a_i) = \frac{\sigma^2}{\sum x_i^2}
$$

aⁱ are uncorrelated due to orthogonality of design

 $\rightarrow \sigma$ is known

95% C.I
$$
a_i \pm z_{0.025} \sqrt{\sigma^2 / \sum x_i^2}
$$

 \rightarrow S is known

known
95% C.I
$$
a_i \pm t_{v,0.025} \sqrt{s_{y/x}^2 / \sum x_i^2}
$$
 (when σ unknown)

공정 모형 및 해석**,** 유 준**© 2012-05-31 28**

► Least squares model for DOE in 2 factors

- Interaction term is small: blue plane is flat \blacktriangleright
- Interaction term is large: plane has curvature \blacktriangleright

 \triangleleft Calculation by hand: 1st example (little interaction)

$$
\mathbf{y} = \begin{bmatrix} 60 \\ 72 \\ 54 \\ 68 \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} +1 & -1 & -1 & +1 \\ +1 & +1 & -1 & -1 \\ +1 & -1 & +1 & -1 \\ +1 & +1 & +1 & +1 \end{bmatrix} \qquad \mathbf{X}^T \mathbf{y} = \begin{bmatrix} 246 \\ -20 \\ -12 \\ -2 \end{bmatrix} \quad \mathbf{X}^T \mathbf{X} = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}
$$

$$
\mathbf{a} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \begin{bmatrix} 1/4 & 0 & 0 & 0 \\ 0 & 1/4 & 0 & 0 \\ 0 & 0 & 1/4 & 0 \\ 0 & 0 & 0 & 1/4 \end{bmatrix} \begin{bmatrix} 246 \\ -20 \\ -12 \\ -12 \\ -2 \end{bmatrix} = \begin{bmatrix} 61.5 \\ -5 \\ -3 \\ -0.5 \end{bmatrix}
$$

$$
y = a_0 + a_1 x_1 + a_2 x_2 + a_{12} x_1 x_2
$$

= 61.5 - 5x₁ - 3x₂ - 0.5x₁x₂

- **X**^T**X**: zeros on off-diagonals
	- \rightarrow orthogonal matrix
	- \rightarrow each column is varied independently of the others
- \rightarrow Interpret *a*₁ = −5?
	- *x*1 (T) is changed in normalized temperature by 1 unit
	- Changing x_1 from 0 to 1 implies actual changes in T from 346K to 354K
	- -5% decrease in conversion for every 8K increase in temperature
- Interpret $a_2(S) = -3$?

Calculation by hand: 1st example (strong interaction)

$$
\mathbf{y} = \begin{bmatrix} 77 \\ 79 \\ 81 \\ 89 \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} +1 & -1 & -1 & +1 \\ +1 & +1 & -1 & -1 \\ +1 & -1 & +1 & -1 \\ +1 & +1 & +1 & +1 \end{bmatrix}
$$

- Verify this yourself $y = 81.5 + 2.5x_1 + 3.5x_2 + 1.5x_1x_2$
	- Large interaction is verified.

Any stat. S/W can generate this.

2 3 factorial design

 2^3 3 variables 2 levels \overline{a} Qualitative variable

 \rightarrow Three variables: T, C, and catalyst type (A and B)

 \rightarrow Denote: $x_3 = -1$ for catalyst A

 $= +1$ for catalyst B

2 3 factorial (= 8 runs): all combination of the 2 levels of the 3 variables.

- \rightarrow Analysis by least squares
	- \rightarrow Fit model:

 $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_{12} x_1 x_2 + a_{13} x_1 x_3 + a_{23} x_2 x_3 + a_{123} x_1 x_2 x_3$

In matrix-vector notation, $y = Xa$

 \rightarrow Again, by least squares

$$
\mathbf{a} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \Rightarrow a_i = \frac{\sum x_i y}{\sum x_i^2}
$$

\nC.I of a_i var(\mathbf{a}) = ($\mathbf{X}^T \mathbf{X}$)⁻¹ $\sigma^2 \Rightarrow \text{var}(a_i) = \frac{\sigma^2}{\sum x_i^2}$
\n95% C.I $a_i \pm z_{0.025} \sqrt{\sigma^2 / \sum x_i^2}$
\n95% C.I $a_i \pm t_{v,0.025} \sqrt{s_{y/x}^2 / \sum x_i^2}$ (when σ unknown)

2 3 factorial design example

Plastics molding factory; waste treatment.

- Factor 1: C : chemical compound added (A or B)
- ► Factor 2: T : treatment temperature (72 F or 100F)
- ► Factor 3: S: stirring speed (200 rpm or 400 rpm)
- \blacktriangleright y = amount of pollutant discharged [lb]

2 3 factorial design example

- 1. Calculate main effects, C, T and S
- 2. Calculate the 3 two-factor interactions:
	- 1. CT, CS and TS
- 3. and the single 3 factor interaction
	- 1. CTS
- 4. Main effects and interactions using least squares (by-hand)
- 5. S/W verification:
	- $y = 11.25 + 6.25x_C + 0.75x_T 7.25x_S + 0.25x_Cx_T 6.75x_Cx_S 0.25x_Tx_S$

 $-0.25x_Cx_Tx_S$

2 k factorial design

→ Desirable features of factorial designs

 \rightarrow Othogonal \rightarrow easy calculations

 \rightarrow uncorrelated estimates a_i

- \rightarrow Good variation in all variables
- \rightarrow Efficient use of all data points
- \rightarrow The only way to discover interactions between variables
- \rightarrow Allows experiments to be performed in blocks
- \rightarrow Allows designs of increasing order to be build up sequentially

Significance of effects

- For a 2^k factorial
	- 2 ^k parameters in the least squares model
	- 2 ^k data points collected
	- \rightarrow implies $S_r = 0$
	- Zero degrees of freedom
- ◆ How to assess if an effect is significant? Consider 2 approaches.

Significance of effects (cont.)

Significant? : Pareto-plot (or normal probability plot)

- 2 4 factorial: 15 parameters + intercept
- \rightarrow Bar plot: any stat. S/W can do this.

Significance of effects (cont.)

- \rightarrow Caution: if an interaction is significant (e.g. BC), then no need to test the main effects, B and C
	- \bullet these main effects are "automatically" significant
	- \rightarrow even if they have small numeric coefficients
	- since B and C act together to affect response *y*
	- so never exclude main effects whose interactions are significant

Significant effect?

- We require degrees of freedom to construct confidence intervals. Two ways to get DoF:
	- 1. Replicate experiments
		- \div Easy (to calculate), but not doable when # of factor 4 \sim
	- 2. Drop out a factor from a full factorial
		- \rightarrow Will five factor interaction $x_1x_2x_3x_4x_5$ be significant?
		- Or, drop smallest effects first.
	- \rightarrow In either case, delete non-significant effects (parameters) and re-fit
	- Now least squares model has new residuals and DOF.
	- \rightarrow Use all previous tools from least squares to check model
	- Use confidence interval of a_i to verify the effects are significant

Significant effect? (cont.)

 \rightarrow Replicate runs

- replicated 2³ factorial: 8 + 8 runs
- \rightarrow *y*_{i,1} & *y*_{i,2} at condition i (i = 1, 2, ..., 8)
-
- **2012-05-31 2012-05-31 2012-05-31 2012-05-31 2012-05-31 2012-05-31 2012-05-31 2012-05-31 2012-05-31 2022-05-31 2022-05-31 2022-05-31 2022-05-31 2022-05-31 2022-05-31 2022-05-31 2022-05-31** $y_i = 0.5(y_{i,1} + y_{i,2}), \quad a_i = y_{i,2} \quad y_{i,1}$
 $s_i^2 = \frac{1}{2-1} \left((y_{i,1} - \overline{y}_i)^2 + (y_{i,2} - \overline{y}_i)^2 \right) = \frac{1}{2} d_i^2$
	- Pool variances for all 2^k levels
	- 2 2 -1 \sum d^2 \sqrt{x} $\sqrt{2}$ *k* $y/x = \overline{2} \sqrt{u_i}$ *i* $s_{y/x}^2 = \frac{1}{2} \sum d$
	- Errors are t-distributed with 2^k degrees of freedom

$$
\begin{array}{lll}\n\text{F.} & \text{F.} & \text{F.} \\
\text
$$

 \rightarrow determine if a main effect or interaction is significant

Significant effect? (cont.)

 \rightarrow No replicates

- $2⁴$ factorial: 15 parameters + intercept \rightarrow DOF (#data #parameters) = 0
- \rightarrow AB seems insignificant \rightarrow set $a_{AB} = 0 \rightarrow$ now, DOF = 1

Exercise

- \rightarrow When you have replicates.
	- \rightarrow You're a process engineer @ a semiconductor plant who wants to determine factors affecting thickness of epitaxial layer on silicon wafer. The main factors (or input variables) you think are (deposition) time and (arsenic) flowrate. Assume only linear relationship.
	- \rightarrow Solution
		- 1. 2 2 factorial design with 4 replicates @ corners

stat>DOE>Factorial>create Factorial Design

공정 모형 및 해석**,** 유 준**© 2012-05-31 45**

3. Run experiments according to design matrix

Why?

공정 모형 및 해석**,** 유 준**© 2012-05-31 46**

4. Analysis of experimental results

Using all analysis tools from least squares & main/interaction plots

DOE>Factorial>Analyze Factorial Design

4. Analysis of experimental results (cont.)

2012-05-31 공정 모형 및 해석**,** 유 준**© 48**

(a) ANOVA table (∵we have replicates)

Estimated Effects and Coefficients for thickness (coded units)

Analysis of Variance for thickness (coded units)

Unusual Observations for thickness

Obs StdOrder thickness St Resid 12 $-2.99B$ 11

R denotes an observation with a large standardized residual.

Estimated Coefficients for thickness using data in uncoded units

(b) Residual plots

2012-05-31 공정 모형 및 해석**,** 유 준**© 50**

(c) Plots for effects

You can also determine which factors have significant effects.

2012-05-31 공정 모형 및 해석**,** 유 준**© 51**

Alternatively, main/interaction plot

2012-05-31 공정 모형 및 해석**,** 유 준**© 52**

Tin

 \bullet Sh

∎ Lon

- Depending on your goal, you can refine a prediction model by selecting significant factors (variables) only.
	- \rightarrow less # of coefficients
	- \rightarrow more degree of freedom
- \rightarrow more accurate estimate of C.I ($S_{y/x}$ can decrease)

This is very useful even when you have *many factors* and *no replicates*. Principle of sparsity of effects: the system (process) is usually dominated by the main effects and low-order interactions. That is, the three factor and higher-order interactions are usually negligible.

Design for 2nd order models

If 1st order + interaction model exhibits "Lack of fit" \rightarrow Include x_1^2, x_2^2, \cdots terms But we need more than 2 level designs. \rightarrow Central composite design or 3 level factorials *y*

Central composite design $(k = 2)$

(1) Start with 2^k design with center points

(2) Add vertices of star (for k=2, $\alpha = \sqrt{2}$)

(3) Run experiments & analysis

Design for 2nd order models (cont.)

 \rightarrow Values of α

Cube plot for 3 variables (factors)

15 runs For central composite $design (k = 3)$

\rightarrow 3 level factorial

- $3²$ 2 variables at all combinations of 3 levels
- 3 3 **27** runs for 3 variables

※Full quadratic model (assume 123 interaction is negligible.) egligible.)
 $a_1^2 + a_{22}x_2^2 + a_{33}x_3^2$

1 quadratic model (assume 123 interaction is negligible.)
 $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3 + a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$

Allows for approximation of many response.

공정 모형 및 해석**,** 유 준**© 2012-05-31 55**

Design for 2nd order models (cont.)

※A t-statistic for curvature

Minitab uses ANOVA for testing curvature when center point replicates exist.

Response Surface Methods (RSM)

Imagine you MUST climb a mountain,

- ◆ What you would do & how?
	- ◆ If you have GPSs and altimeters.
- Same situation: you want to increase a reactor's yield but don't know the process at all.

2012-05-31 공정 모형 및 해석**,** 유 준**© 57**

Response Surface Methods (RSM)

RSM

- **→** Objective: optimize a process (or system) using mathematical & statistical techniques.
- \rightarrow But, the process is usually unknown. (i.e., relationships between *x* & *y* variables are unknown.)

(1) The First step of RSM is to *find a (approximate) model* of the process using least squares & DOE.

(2) Next step is to *improve process operation* by moving to a better operating point using the model.

(3) Repeat this until optimum is reached.

FYI (For Your Information)

Response surface?

62.00

 x_1 (time)

 $+1$

59.20

FYI (For Your Information)

COST **costs too much** to find optimum when interaction exists.

 \rightarrow Compare two cases

RSM (cont.)

General procedure

1. Perform (fractional) factorial design around current operating conditions & fit a linear model form

 $0 = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_1 x_4 x_2 + a_1 x_4 x_3 + a_2 x_2 x_4 + a_3 x_3 x_4$

2. Calculate direction of S.A. & perform experiments along this direction until response doesn't improve. (step size to be determined carefully)

Point A: 40 minutes, 157°F, $y = 40.5$ Point B: 45 minutes, 159°F, $v = 51.3$ Point C: 50 minutes, $161^{\circ}F$, $y = 59.6$ Point *D*: 55 minutes, 163°F, $y = 67.1$ Point E: 60 minutes, $165^{\circ}F$, $y = 63.6$ Point F: 65 minutes, 167°F, $y = 60.7$

RSM (cont.)

- 3. Lay down a new factorial design.
- 4. Repeat steps $1 \sim 3$ until linear model is insufficient.
	- Curvature shows up.
	- 2-factor interaction dominate main effects.
- 5. Estimate a quadratic model if curvature and/or interaction is large relative to main effects.
	- Add star points \rightarrow central composite design
	- Or three-level design

 $x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$ Or three-level design
 $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3 + a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$

6. Plot response contour and move towards to best conditions (most statistical software will do this)

RSM Exercise

Yield $y = f(T, S)$

Current operating conditions

- $T = 325 K$
- $S = 0.75$ g/L
- Profit = $$407$

Step 1

$$
\hat{y} = 385.6 + 55 x_T + 134 x_S - 3.75 x_T x_S
$$

Step 2

Derection of S.A

$$
= \left(\frac{\partial y}{\partial x_T} \quad \frac{\partial y}{\partial x_S}\right) \equiv (55 \quad 134)
$$

experiment 5 6 7
profit 4669 \$688 \$463

RSM Exercise

Step 3

$$
\hat{y} = 670 + 13x_T - 39x_S - 2.4x_Tx_S
$$

Derection of S.A

$$
= \left(\frac{\partial y}{\partial x_T} \frac{\partial y}{\partial x_S}\right) \approx (13 - 39)
$$

Profit $(12) = 716 <$ profit (9)

 \rightarrow Strong interaction

Step 5

Star points

 $y_{13} = 720, y_{14} = 699, y_{15} = 610,$ and $y_{16} = 663.$ $y = 688 + 12.9x_T - 39.1x_S - 2.4x_Tx_S - 4.2x_T^2 - 12.2x_S^2$.

Mixture design

- **→** Mixture design
	- Ordinary factorial design with a constraint

 $0 \le x_A, x_B, x_C \le 1, x_A + x_B + x_C = 1$

Of course, RSM can be used to determine best mixture.

Mixture design (cont.)

Example: Product design (development)

Mixture design (cont.)

Example: Functional Polymer Development

Mitsubishi Chemicals

2012-05-31 공정 모형 및 해석**,** 유 준**© 70**

Mixture design (cont.)

(Advanced) Mixture design example

