Multivariate statistical methods for the analysis, monitoring and optimization of processes

Jay Liu Dept. of Chemical Engineering Pukyong National University

Some properties of PLS models

• At convergence, **w**, **u**, **t**, **c** don't change.

$$\mathbf{w} = \mathbf{X}^{T}\mathbf{u}/\mathbf{u}^{T}\mathbf{u}$$
Substitute for $\mathbf{u} = \mathbf{X}^{T}\mathbf{Y}\mathbf{c}/((\mathbf{c}^{T}\mathbf{c})(\mathbf{u}^{T}\mathbf{u}))$
Substitute for $\mathbf{q} = \mathbf{X}^{T}\mathbf{Y}\mathbf{Y}^{T}\mathbf{t}/((\mathbf{t}^{T}\mathbf{t})(\mathbf{c}^{T}\mathbf{c})(\mathbf{u}^{T}\mathbf{u}))$
Substitute for $\mathbf{t} = \mathbf{X}^{T}\mathbf{Y}\mathbf{Y}^{T}\mathbf{X}\mathbf{w}/(((\mathbf{w}^{T}\mathbf{w})(\mathbf{t}^{T}\mathbf{t})(\mathbf{c}^{T}\mathbf{c})(\mathbf{u}^{T}\mathbf{u}))$

Constant, denote as $\boldsymbol{\lambda}$

 $\therefore \mathbf{X}^T \mathbf{Y} \mathbf{Y}^T \mathbf{X} \mathbf{w} = \lambda \mathbf{w}$

 \rightarrow w is eigenvector of X^TYY^TX

Some properties of PLS models

- Also,
 - **t** is eigenvector of **X**^T**XYY**^T.
 - **u** is eigenvector of **YY**^T**XX**^T.
 - **q** is eigenvector of **Y**^T**XX**^T**Y**.
- Orthogonal properties

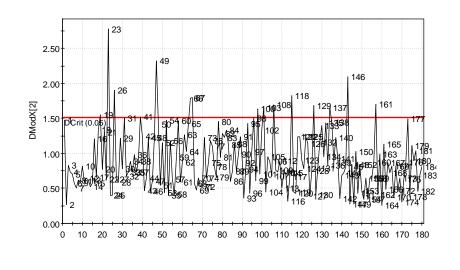
$$\mathbf{w}_i^T \mathbf{w}_j = 0 \quad (i \neq j)$$
$$\mathbf{t}_i^T \mathbf{t}_j = 0 \quad (i \neq j)$$
$$\mathbf{w}_i^T \mathbf{p}_j = 0 \quad (i < j)$$

Residuals

- Measure of size of residuals (same as in PCA)
 - $R_{X,k}^2$ measures how well the model describe the variable (x_k)
 - $R_{Y,m}^2$ measures how well the model describe the variable (y_m)
 - RV2X and RV2Y in Simca-p
 - $Q_{X,k}^2$ measures how well the model predict the variable (x_k)
 - $Q_{X,k}^2$ measures how well the model predict the variable (y_m)
 - $R^2 = 1 [SS_{residuals}/SS_{data}]$ SS = sum of squares
 - $Q^2 = 1 [SS_{predictive resid.}/SS_{data}] = 1 [PRESS/SS_{data}]$

Residuals

- Residuals of observations (row-wise)
 - Same as PCA, but two spaces, X and Y
 - X-residuals, $\mathbf{E} = \mathbf{X} \mathbf{T}\mathbf{P}^{\mathsf{T}}$ row SD = DModX_i column criterion $R_{X,k}^2$
 - Y-residuals, $\mathbf{F} = \mathbf{Y} \mathbf{T}\mathbf{C}^{\mathsf{T}}$ row SD = DModY_i column criterion $R_{Y,m}^2$



• Critical values of DMOdX/DModY from F-distribution

Cross-validation

- Analogous to PCA, PLS model dimensionality can be chosen by CV
 - Data (rows of X and Y) divided into G groups (~7)
 - Model estimated for data minus one group (G rounds)
 - Y of deleted group predicted by model
 - PRESS (prediction error sum of squares) = $\Sigma (y_i y_{ip})^2$
 - y_{ip} = predicted by model estimated from data after deleting the ith observation

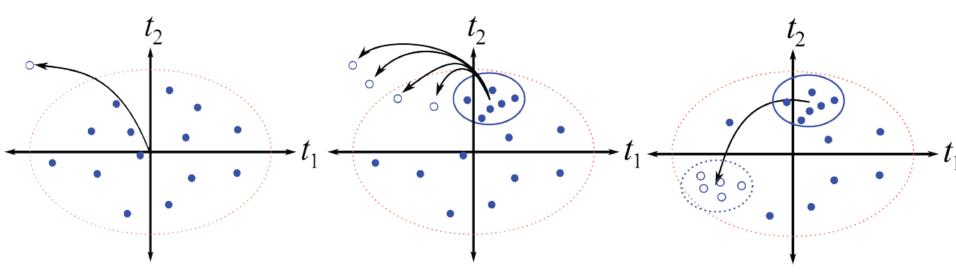
VIP (Variable importance for the projection)

- VIP is a weighted combination over all components of the squared PLS weights w_{ak}.
- SSY_a/SSY_{tot} is amount of Y variance explained by component a.
- Suggestions for usage
 - "Normal" VIP value is 1.0.
 - VIP < 0.5 indicates unimportant X's in explaining Y & the projection in X

$$VIP_{k}^{2} = K \sum_{a} \left(w_{ak}^{2} SSY_{a} \right) / SSY_{tot}$$

Contribution plot

- Same as PCA
 - Also have for Y variables



From the model center to a point

Four seperate contribution plots to learn why the sequence of deviations occurred

From one group to another group

PLS regression coefficients

• PLS model

$$\mathbf{Y} = \mathbf{T}\mathbf{C}^{T} + \mathbf{F}$$

= $\mathbf{t}_{1}\mathbf{c}_{1}^{T} + \mathbf{t}_{2}\mathbf{c}_{2}^{T} + \dots + \mathbf{F}$
= $\mathbf{X}\mathbf{w}_{1}\mathbf{c}_{1}^{T} + (\mathbf{X} - \mathbf{t}_{1}\mathbf{p}_{1}^{T})\mathbf{w}_{2}\mathbf{c}_{2}^{T} + \mathbf{F}$

Making all substitutions for t's

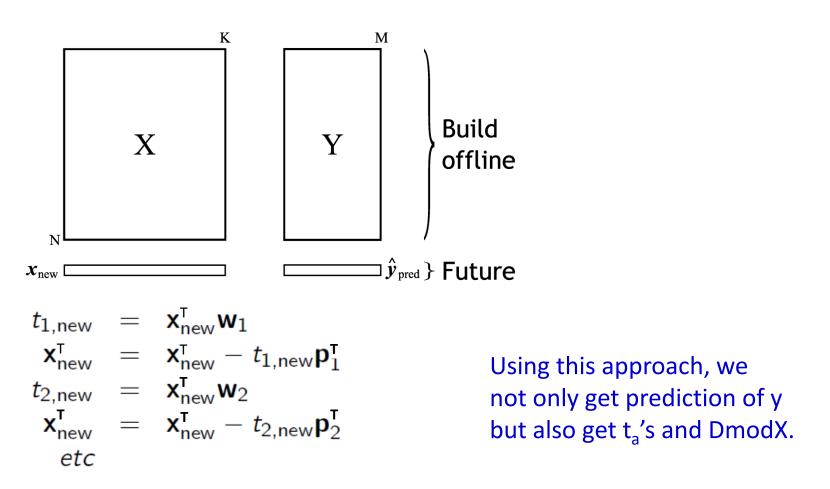
$$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{F}$$
 where $\mathbf{B} = \mathbf{W}(\mathbf{P}^T\mathbf{W})^{-1}\mathbf{C}^T$.e.,

$$y_m \cong b_{1m}x_1 + b_{2m}x_2 + \dots + b_{Km}x_K$$

Size and sign of scaled and centered regression coefficients (b_{km}) indicates influence of x_k term on model for y_m .

유준, Copyright ©

Prediction via PLS model

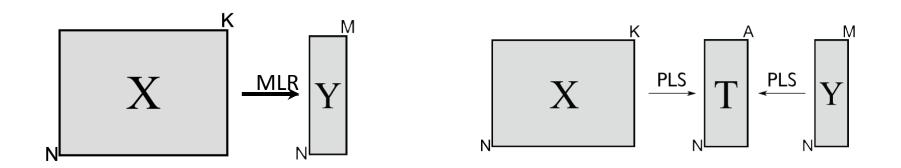


Collect all the $t_{a,new}$ score values in \mathbf{t}_{new}

Then, $\widehat{\mathbf{y}}_{new}^{T} = \mathbf{t}_{new}^{T} \mathbf{C}^{T}$

Relation to MLR

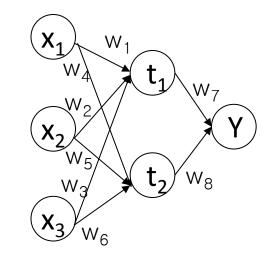
- PLS contains MLR as a special case
 - When the X variables are few and fairly independent
 - And $A \rightarrow K$ (A is the number of PLS component)
 - Then T \rightarrow reformulation of X
 - PLS \rightarrow MLR



Relation to Neural Networks

- In the linear case:

 - $Y = \Sigma t_a c_a$ $t_a = \Sigma x_k w_{ak} *$



Identical to PLS, but PLS gives a unique solution (the t_a's are orthogonal and anchored due to modeling of the x-space)

(McAvoy & Qin, Computers and Chemical Engineering, 16(1992) 379-391)

- Drug discovery
 - New drugs: chemicals that are biologically active.
 - Testing chemicals for biological activity is very expensive.
 - Prediction of biological activity from cheaper chemical measurements is desirable
 - Measurements: size, lipophilicity, and polarity at various sites on the molecule
- Dataset
 - 30 chemical compounds
 - 16 measurements including the activity (represented by the logarithm of relative activity)

Originally from

- Ufkes *et.al.* (1978), "Structure-Activity Relationships of Bradykinin-Potentiating Peptides," European Journal of Pharmacology, 50, 119.
- Ufkes *et al.* (1982), "Further Studies on the Structure-Activity Relationships of Bradykinin-Potentiating Peptides," European Journal of Pharmacology, 79, 155.

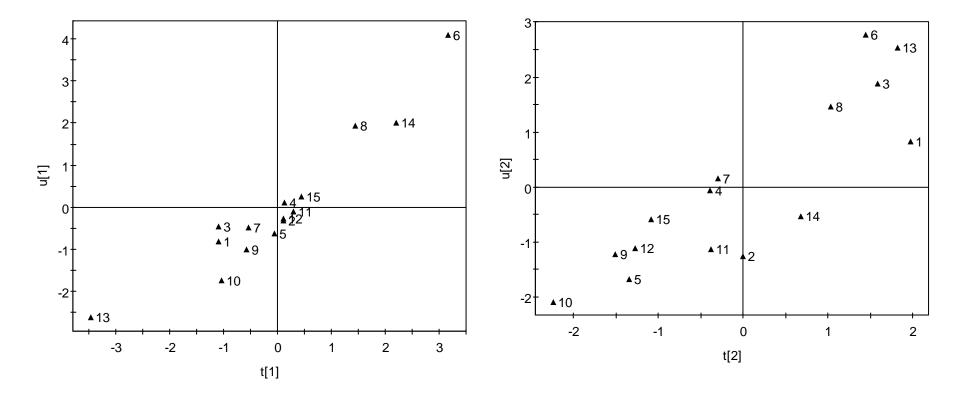
data per	nta;										
inpu	t obsnam 🖇	\$ S1 L1 H	P1 S2 L2	P2							
			P3 S4 L4								
		S5 L5 I	25 log_I	RAI 00;							
$n = \underline{n};$											
data	lines;										
VESSK	-2.6931	-2.5271	-1.2871	3.0777	0.3891	-0.0701					
	1.9607	-1.6324	0.5746	1.9607	-1.6324	0.5746					
	2.8369	1.4092	-3.1398			0.00					
VESAK	-2.6931	-2.5271	-1.2871	3.0777	0.3891	-0.0701					
	1.9607	-1.6324	0.5746	0.0744	-1.7333	0.0902					
	2.8369	1.4092	-3.1398			0.28					
VEASK	-2.6931	-2.5271	-1.2871	3.0777	0.3891	-0.0701					
	0.0744	-1.7333	0.0902	1.9607	-1.6324	0.5746					
	2.8369	1.4092	-3.1398			0.20					
VEAAK	-2.6931	-2.5271	-1.2871	3.0777	0.3891	-0.0701					
	0.0744	-1.7333	0.0902	0.0744	-1.7333	0.0902					
	2.8369	1.4092	-3.1398			0.51					
VKAAK	-2.6931	-2.5271	-1.2871	2.8369	1.4092	-3.1398					
	0.0744	-1.7333	0.0902	0.0744	-1.7333	0.0902					
	2.8369	1.4092	-3.1398			0.11					
VEWAK	-2.6931	-2.5271	-1.2871	3.0777	0.3891	-0.0701					
	-4.7548	3.6521	0.8524	0.0744	-1.7333	0.0902					
	2.8369	1.4092	-3.1398			2.73					
VEAAP	-2.6931	-2.5271	-1.2871	3.0777	0.3891	-0.0701					
	0.0744	-1.7333	0.0902	0.0744	-1.7333	0.0902					
	-1.2201	0.8829	2.2253			0.18					
VEHAK	-2.6931	-2.5271	-1.2871	3.0777	0.3891	-0.0701					
	2.4064	1.7438	1.1057	0.0744	-1.7333	0.0902					
	2.8369	1.4092	-3.1398			1.53					
VAAAK	-2.6931										
	0 0744	1 7000	0 0000	0 0744	1 7000	0 0000					

- Goal
 - To predict biological activity with chemical measurements (that are easily available)
 - To understand latent structure of chemical measurements
 - To find which measurements are more important in predicting biological activity

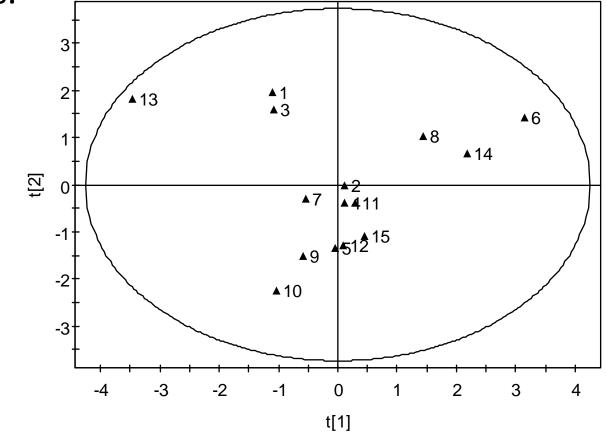
• Two components seems adequate.

	odel M1									
Model: M1 Title: Untitled								<u>P</u> ro	operties	
Type: PLSObservations (N) = 15, Variables (K) = 16 (X = 15, Y = 1) \underline{W} ork Set								ork Set		
Comp	ponents:									
A	R2X	R2X(cum)	Eige	R2Y	R2Y(cum)	Q2	Limit	Q2(cum)	Signi	It
00	-	0.000	-	-	0.000	-	-	-		
01	0.169	0.169	2.535	0.896	0.896	0.628	0.097	0.628	R1	1
02	0.128	0.297	1.916	0.078	0.975	0.363	0.097	0.763	R1	1
03	0.147	0.443	2.198	0.005	0.979	-0.197	0.097	0.763	N4	1
04	0.118	0.562	1.776	0.002	0.982	-0.194	0.097	0.763	N4	1
I										

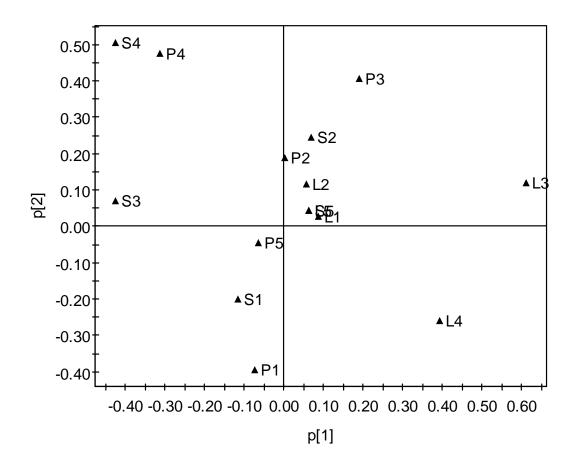
t vs. u plots verify linear relationships (t_i = u_i + e)



Groups/clusters or outliers can be found in x-score plots.

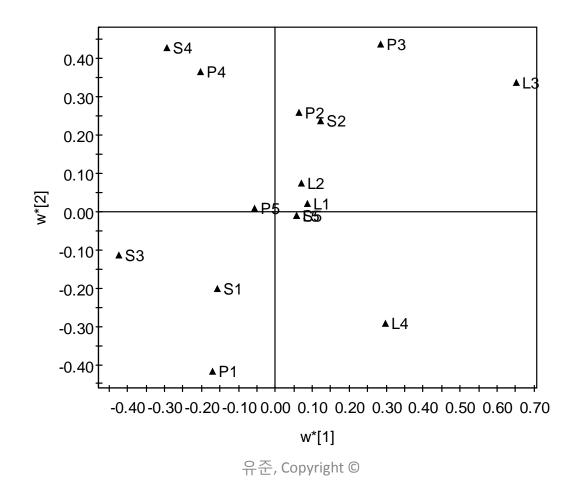


• And which measurements may be responsible for that clusters and/or outliers.

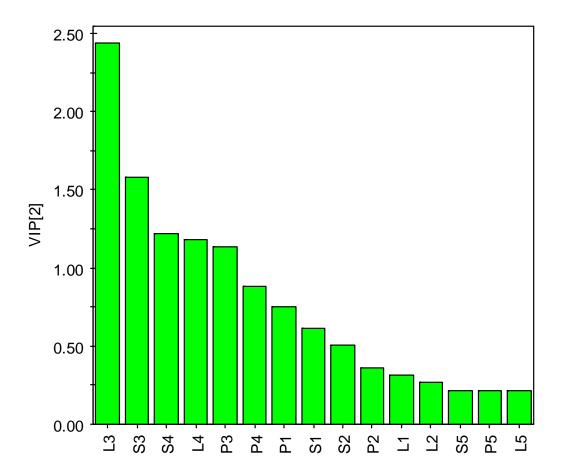


유준, Copyright ©

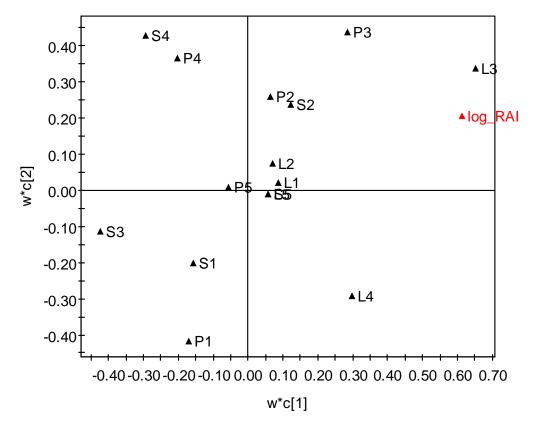
 Weight (w*) plots can tell relative importance of chemical measurements in predicting biological activity..



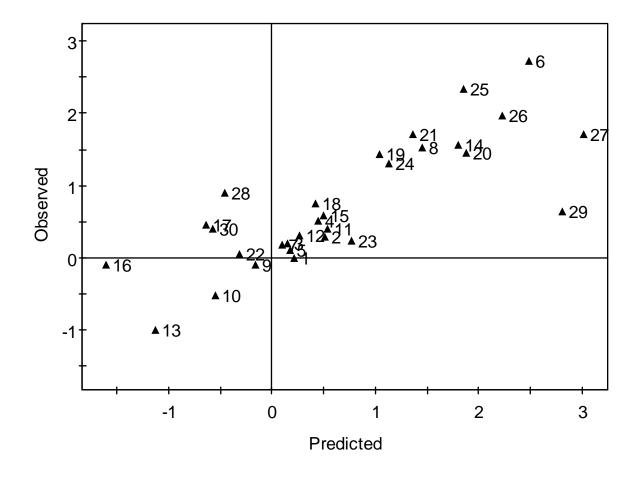
• A VIP plot can reveal this more easily.



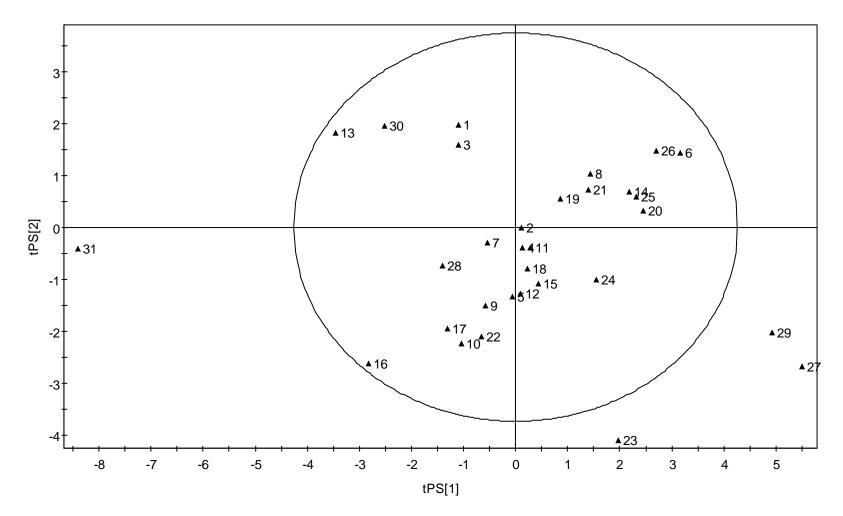
w*c plots show the correlation structure between X and Y.
 One sees how the X and Y variables combine in the projections, and how the X variables relate to the Y variables.



• Prediction for remaining 15 compounds



• Prediction for remaining 15 compounds



유준, Copyright ©

- Approximate confidence interval/regions based on distribution assumption
 - Since $t_a (= \mathbf{p}_a^T \mathbf{x})$ is a linear function of many x's, by the **Central Limit Theorem**, $t_a \sim N(0, \sigma_t^2)$ even if the individual x's are not normally distributed.
 - → Use normal theory (or t-distribution if # observation is not large) to obtain confidence intervals/regions for t_a's

***** Confidence interval: for single variable

% Joint confidence interval for more than two variable? \rightarrow confidence region

1. 100(1- α)% confidence interval of t_a

 $\pm t_{\alpha/2}(df) \cdot s_{t_a} \qquad \text{statistic} \pm A \times \sigma_{\text{statistic}}$

Value that depends on P.D.F of the statistic & confidence level $\boldsymbol{\alpha}$

Standard error of the statistic

2. Joint $100(1-\alpha)\%$ confidence region of t's

$$T^{2} = (\mathbf{x} - \overline{\mathbf{x}})^{T} \mathbf{S}_{\mathbf{x}}^{-1} (\mathbf{x} - \overline{\mathbf{x}})$$

$$\mathbf{S}_{\mathbf{x}} = \hat{\Sigma}_{\mathbf{x}} = \frac{1}{N} \mathbf{X}^{T} \mathbf{X} = \frac{1}{N} \mathbf{P} (\mathbf{T}^{T} \mathbf{T}) \mathbf{P}^{T} = \mathbf{P} \mathbf{S}_{t} \mathbf{P}^{T}$$

$$T^{2} = (\mathbf{x} - \overline{\mathbf{x}})^{T} \mathbf{P} \mathbf{S}_{t}^{-1} \mathbf{P}^{T} (\mathbf{x} - \overline{\mathbf{x}})$$

$$= \mathbf{t}^{T} S_{t}^{-1} \mathbf{t}$$

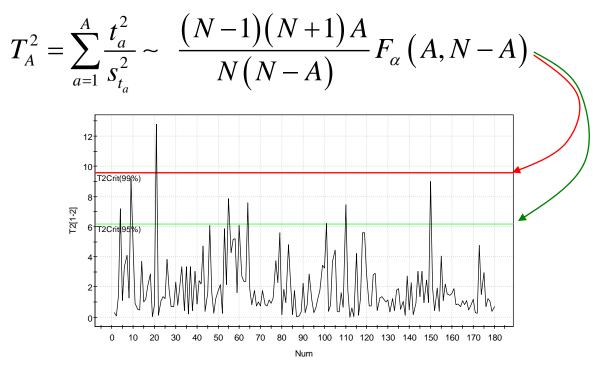
$$= \sum_{a=1}^{K} \frac{t_{a}^{2}}{s_{t_{a}}^{2}}$$

$$\mathbf{S}_{t} = \begin{bmatrix} s_{t_{a}}^{2} & 0 & \cdots & 0 \\ 0 & s_{t_{2}}^{2} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & s_{t_{K}}^{2} \end{bmatrix}$$

• Upper 100(1- α)% confidence limit on T² is given by

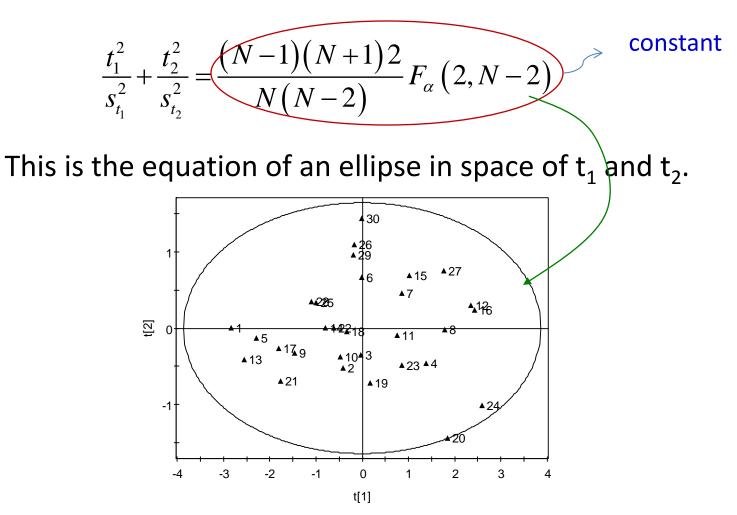
$$T_{\alpha}^{2} = \frac{\left(N-1\right)\left(N+1\right)K}{N\left(N-K\right)}F_{\alpha}\left(K,N-K\right)$$

• If only A component are used,



유준, Copyright ©

• Or in space of t₁, t₂, ...



유준, Copyright ©

3. SPE confidence interval (by Jackson, 1991)

$$Q = (\mathbf{x} - \hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}}) (\equiv SPE)$$

Critical upper 100(1- α)% confidence limit on Q is give by

$$Q_{\alpha} = \theta_{1} \left[\frac{Z_{\alpha} \sqrt{2\theta_{2} h_{0}^{2}}}{\theta_{1}} + \frac{\theta_{2} h_{0} (h_{0} - 1)}{\theta_{1}^{2}} + 1 \right]^{\frac{1}{h_{0}}}$$

Where

$$\theta_{1} = \sum_{a=A+1}^{K} \lambda_{a} = Tr(\mathbf{E}) \qquad \theta_{3} = \sum_{a=A+1}^{K} \lambda_{a}^{3} = Tr(\mathbf{E}^{3})$$
$$\theta_{2} = \sum_{a=A+1}^{K} \lambda_{a}^{2} = Tr(\mathbf{E}^{2}) \qquad h_{0} = 1 - \frac{2\theta_{1}\theta_{3}}{3\theta_{2}}$$

Some S/W's use resampling methods (bootstrap, jackknife) to calculate C.I.

Readings

- Theory
 - Burnham, A.J., Viveros, R., MacGregor, J.F., "Frameworks for latent variable multivariate regression," J. Chemometrics 10, 31-45, (1996)
 - Hoskuldsson, A., "PLS regression methods" J. Chemometrics 2, 211-228, (1988)
- General
 - Wold, S., Sjöström, M., and Eriksson, L., "PLS regression: A basic tool of chemometrics," Chemometrics and Intelligent Laboratory Systems, 58, 109-130, (2001)
- Applications
 - Gossen, P.D., MacGregor, J.F., Pelton, R.H., "composition and particle diameter for styren/methyl methacrylate copolymer latex using UV and NIR spectroscopy," applied spectroscopy, **47**(11), 1852-1870
 - MacGregor, J.F., Jaeckle, D., Kiparissides, C. and Koutoudi, M., "process monitoring and diagnosis by multi-block PLS methods," AIChE J., 40(5) 826-838, (1994)