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Some properties of PLS models 

• At convergence, w, u, t, c don’t change. 
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Substitute for u 

Substitute for q 

Substitute for t 

Constant, denote as λ 
T T λ∴ =X YY Xw w

 w is eigenvector of XTYYTX 



Some properties of PLS models 

• Also, 
• t is eigenvector of XTXYYT. 
• u is eigenvector of YYTXXT. 
• q is eigenvector of YTXXTY. 

 
• Orthogonal properties 
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Residuals 

• Measure of size of residuals (same as in PCA) 
•        measures how well the model describe the variable (xk) 
•        measures how well the model describe the variable (ym) 

• RV2X and RV2Y in Simca-p 

•        measures how well the model predict the variable (xk) 
•        measures how well the model predict the variable (ym) 

 
• R2 = 1 – [SSresiduals/SSdata]   SS = sum of squares 
• Q2 = 1 – [SSpredictive resid./SSdata] = 1 - [PRESS/SSdata]  
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Residuals 

• Residuals of observations (row-wise) 
• Same as PCA, but two spaces, X and Y 
 
• X-residuals, E = X – TPT 

 row SD = DModXi 

 column criterion  
 
• Y-residuals, F = Y – TCT 

 row SD = DModYi 

 column criterion  
 
• Critical values of DMOdX/DModY from F-distribution 
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Cross-validation 

• Analogous to PCA, PLS model dimensionality can be 
chosen by CV 
• Data (rows of X and Y) divided into G groups (~7) 
• Model estimated for data minus one group (G rounds) 
• Y of deleted group predicted by model 
• PRESS (prediction error sum of squares) = Σ(yi – yip)2  
• yip = predicted by model estimated from data after 

deleting the ith observation 
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VIP (Variable importance for the projection) 

• VIP is a weighted combination over all components 
of the squared PLS weights wak. 

• SSYa/SSYtot is amount of Y variance explained by 
component a. 

• Suggestions for usage 
• “Normal”  VIP value is 1.0. 
• VIP < 0.5 indicates unimportant X’s in explaining Y & the 

projection in X 

유준, Copyright © 7 

( )2 2
k ak a tota

VIP K w SSY SSY= ∑



Contribution plot 

•  Same as PCA 
• Also have for Y variables 
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PLS regression coefficients 

• PLS model 
 
 
 
Making all substitutions for t’s 
 
i.e.,  
 
 
Size and sign of scaled and centered regression coefficients 

(bkm) indicates influence of xk term on model for ym. 
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Prediction via PLS model 
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Using this approach, we 
not only get prediction of y 
but also get ta’s and DmodX. 



Relation to MLR 

• PLS contains MLR as a special case 
• When the X variables are few and fairly independent 
• And A  K (A is the number of PLS component) 
• Then T  reformulation of X 
• PLS  MLR 
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Relation to Neural Networks 

• In the linear case: 
• Y = Σtaca 

• ta = Σxkwak * 
 
 
 
 

Identical to PLS, but PLS gives a unique solution (the ta’s are 
orthogonal and anchored due to modeling of the x-space) 

 
(McAvoy & Qin, Computers and Chemical Engineering, 16(1992) 379-391) 
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Tutorials 

• Drug discovery 
• New drugs: chemicals that are biologically active.  
• Testing chemicals for biological activity is very expensive. 
• Prediction of biological activity from cheaper chemical 

measurements is desirable 
• Measurements: size, lipophilicity, and polarity at various sites on 

the molecule 
• Dataset 

• 30 chemical compounds 
• 16 measurements including the activity (represented by the 

logarithm of relative activity) 
Originally from  
Ufkes et.al.  (1978), "Structure-Activity Relationships of Bradykinin-Potentiating Peptides," European 

Journal of Pharmacology, 50, 119.  
Ufkes et al. (1982), "Further Studies on the Structure-Activity Relationships of Bradykinin-Potentiating 

Peptides," European Journal of Pharmacology, 79, 155.  
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Tutorials 
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Tutorials 

• Goal 
• To predict biological activity with chemical measurements 

(that are easily available) 
• To understand latent structure of chemical measurements 
• To find which measurements are more important in 

predicting biological activity 
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Tutorials 

• Two components seems adequate. 
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Tutorials 

• t vs. u plots verify linear relationships (ti = ui + e) 
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Tutorials 
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• Groups/clusters or outliers can be found in  x-score 
plots. 



Tutorials 

• And which measurements may be responsible for 
that clusters and/or outliers. 
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Tutorials 

• Weight (w*) plots can tell relative importance of 
chemical measurements in predicting biological activity.. 
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Tutorials 

• A VIP plot can reveal this more easily. 
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Tutorials 

• w*c plots show the correlation structure between X and Y. 
One sees how the X and Y variables combine in the 
projections, and how the X variables relate to the Y variables. 
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Tutorials 

• Prediction for remaining 15 compounds 
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Tutorials 

• Prediction for remaining 15 compounds 
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Confidence interval in PCA & PLS 

• Approximate confidence interval/regions based on 
distribution assumption 
• Since                  is a linear function of many x’s, by the 

Central Limit Theorem,                       even if the individual 
x’s are not normally distributed. 

 Use normal theory (or t-distribution if # observation is not 
large) to obtain confidence intervals/regions for ta’s 
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※Confidence interval: for single variable 
※ Joint confidence interval for more than two variable?  confidence 
region 
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Confidence interval in PCA & PLS 

1. 100(1-α)% confidence interval of ta 

 
 

2. Joint 100(1-α)% confidence region of t’s 
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Confidence interval in PCA & PLS 

• Upper 100(1-α)% confidence limit on T2 is given by 
 
 

• If only A component are used, 
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Confidence interval in PCA & PLS 

• Or in space of t1, t2, … 
 
 
 

This is the equation of an ellipse in space of t1 and t2. 
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Confidence interval in PCA & PLS 

3. SPE confidence interval (by Jackson, 1991) 
 
 

Critical upper 100(1-α)% confidence limit on Q is give by 
 
 
 
 
Where 
 
 
 
 

※ Some S/W’s use resampling methods (bootstrap, jackknife) to 
calculate C.I. 
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Readings 

• Theory 
• Burnham, A.J., Viveros, R., MacGregor, J.F., “Frameworks for latent 

variable multivariate regression,” J. Chemometrics 10, 31-45, (1996)  
• Hoskuldsson, A., “PLS regression methods” J. Chemometrics 2, 211-

228, (1988)  
• General 

• Wold, S., Sjöström, M., and Eriksson, L., “PLS regression: A basic tool of 
chemometrics,” Chemometrics and Intelligent Laboratory Systems, 58, 
109-130, (2001) 

• Applications 
• Gossen, P.D., MacGregor, J.F., Pelton, R.H., “composition and particle 

diameter for styren/methyl methacrylate copolymer latex using UV 
and NIR spectroscopy,” applied spectroscopy, 47(11), 1852-1870 

• MacGregor, J.F., Jaeckle, D., Kiparissides, C. and Koutoudi, M., “process 
monitoring and diagnosis by multi-block PLS methods,” AIChE J., 40(5) 
826-838, (1994) 
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