Multivariate statistical methods for the analysis, monitoring and optimization of processes

Jay Liu Dept. of Chemical Engineering Pukyong National University

Some properties of PLS models

• At convergence, **w**, **u**, **t**, **c** don't change.

$$
\mathbf{w} = \mathbf{X}^T \mathbf{u} / \mathbf{u}^T \mathbf{u}
$$

Substitute for $\mathbf{u} = \mathbf{X}^T \mathbf{Y} \mathbf{c} / ((\mathbf{c}^T \mathbf{c})(\mathbf{u}^T \mathbf{u}))$
Substitute for $\mathbf{q} = \mathbf{X}^T \mathbf{Y} \mathbf{Y}^T \mathbf{t} / ((\mathbf{t}^T \mathbf{t})(\mathbf{c}^T \mathbf{c})(\mathbf{u}^T \mathbf{u}))$
Substitute for $\mathbf{t} = \mathbf{X}^T \mathbf{Y} \mathbf{Y}^T \mathbf{X} \mathbf{w} / ((\mathbf{w}^T \mathbf{w})(\mathbf{t}^T \mathbf{t})(\mathbf{c}^T \mathbf{c})(\mathbf{u}^T \mathbf{u}))$

Constant, denote as λ

 \therefore **X**^T**YY^TXw** = λ **w**

w is eigenvector of **X**^T**YY**^T**X**

Some properties of PLS models

- Also,
	- **t** is eigenvector of **X**^T**XYY**^T .
	- **u** is eigenvector of **YY**^T**XX**^T .
	- **q** is eigenvector of **Y**^T**XX**^T**Y**.
- Orthogonal properties

$$
\mathbf{w}_i^T \mathbf{w}_j = 0 \quad (i \neq j)
$$

$$
\mathbf{t}_i^T \mathbf{t}_j = 0 \quad (i \neq j)
$$

$$
\mathbf{w}_i^T \mathbf{p}_j = 0 \quad (i < j)
$$

Residuals

- Measure of size of residuals (same as in PCA)
	- \bullet $R_{X,k}^2\;$ measures how well the model describe the variable (x_k)
	- \bullet $R_{Y,m}^2$ measures how well the model describe the variable (y_m)
		- RV2X and RV2Y in Simca-p
	- \bullet $\mathcal{Q}_{\scriptscriptstyle X,k}^2\;$ measures how well the model predict the variable (x_k)
	- \bullet $\mathcal{Q}_{X,k}^2\;$ measures how well the model predict the variable (y_m)
	- $R^2 = 1 [SS_{residuals}/SS_{data}]$ SS = sum of squares
	- $Q^2 = 1 [SS_{predictive\,resid.}/SS_{data}] = 1 [PRESS/SS_{data}]$

Residuals

- Residuals of observations (row-wise)
	- Same as PCA, but two spaces, X and Y
	- X-residuals, $E = X TP^T$ row $SD = DModX_i$ column criterion $\ R^2_{\scriptscriptstyle X,k}$
	- Y-residuals, $F = Y TC$ ^T row $SD = DModY_i$ column criterion $\,R^2_{\!Y,m}\,$

• Critical values of DMOdX/DModY from F-distribution

Cross-validation

- Analogous to PCA, PLS model dimensionality can be chosen by CV
	- Data (rows of X and Y) divided into G groups (27)
	- Model estimated for data minus one group (G rounds)
	- Y of deleted group predicted by model
	- PRESS (prediction error sum of squares) = $\Sigma(\gamma_i \gamma_{iD})^2$
	- y_{in} = predicted by model estimated from data after deleting the ith observation

VIP (Variable importance for the projection)

- VIP is a weighted combination over all components of the squared PLS weights w_{ak} .
- SSY_a/SSY_{tot} is amount of Y variance explained by component a.
- Suggestions for usage
	- "Normal" VIP value is 1.0.
	- VIP < 0.5 indicates unimportant X's in explaining Y & the projection in X

$$
VIP_k^2 = K \sum_a \left(w_{ak}^2 S S Y_a \right) / S S Y_{tot}
$$

Contribution plot

- Same as PCA
	- Also have for Y variables

From the model center to a point

Four seperate contribution plots to learn why the sequence of deviations occurred

From one group to another group

PLS regression coefficients

• PLS model

$$
\mathbf{Y} = \mathbf{TC}^T + \mathbf{F}
$$

= $\mathbf{t}_1 \mathbf{c}_1^T + \mathbf{t}_2 \mathbf{c}_2^T + \dots + \mathbf{F}$
= $\mathbf{X} \mathbf{w}_1 \mathbf{c}_1^T + (\mathbf{X} - \mathbf{t}_1 \mathbf{p}_1^T) \mathbf{w}_2 \mathbf{c}_2^T + \mathbf{F}$

Making all substitutions for **t**'s

i.e.,
$$
\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{F} \text{ where } \mathbf{B} = \mathbf{W}(\mathbf{P}^T\mathbf{W})^{-1}\mathbf{C}^T
$$

$$
y_m \cong b_{1m}x_1 + b_{2m}x_2 + \cdots + b_{km}x_k
$$

Size and sign of scaled and centered regression coefficients (b_{km}) indicates influence of x_k term on model for y_m .

유준, Copyright © 9

Prediction via PLS model

Collect all the $t_{a,new}$ score values in t_{new}

Then, $\widehat{y}_{\text{new}}^{\text{T}} = \mathbf{t}_{\text{new}}^{\text{T}} \mathbf{C}^{\text{T}}$

Relation to MLR

- PLS contains MLR as a special case
	- When the X variables are few and fairly independent
	- And $A \rightarrow K$ (A is the number of PLS component)
	- Then $T \rightarrow$ reformulation of X \bullet
	- \bullet PLS \rightarrow MLR

Relation to Neural Networks

- In the linear case:
	- $Y = \sum t_a c_a$
	- $t_a = \sum x_k w_{ak}$ *

Identical to PLS, but PLS gives a unique solution (the t_a 's are orthogonal and anchored due to modeling of the x-space)

(McAvoy & Qin, Computers and Chemical Engineering, 16(1992) 379-391)

- Drug discovery
	- New drugs: chemicals that are biologically active.
	- Testing chemicals for biological activity is very expensive.
	- Prediction of biological activity from cheaper chemical measurements is desirable
	- Measurements: size, lipophilicity, and polarity at various sites on the molecule
- Dataset
	- 30 chemical compounds
	- 16 measurements including the activity (represented by the logarithm of relative activity)

Originally from

- Ufkes *et.al*. (1978), "Structure-Activity Relationships of Bradykinin-Potentiating Peptides," European Journal of Pharmacology, 50, 119.
- Ufkes *et al*. (1982), "Further Studies on the Structure-Activity Relationships of Bradykinin-Potentiating Peptides," European Journal of Pharmacology, 79, 155.

- Goal
	- To predict biological activity with chemical measurements (that are easily available)
	- To understand latent structure of chemical measurements
	- To find which measurements are more important in predicting biological activity

• Two components seems adequate.

• t vs. u plots verify linear relationships $(t_i = u_i + e)$

 • Groups/clusters or outliers can be found in x-score plots.

유준, Copyright © 18

• And which measurements may be responsible for that clusters and/or outliers.

Weight (w*) plots can tell relative importance of chemical measurements in predicting biological activity..

• A VIP plot can reveal this more easily.

유준, Copyright © 21

• w*c plots show the correlation structure between X and Y. One sees how the X and Y variables combine in the projections, and how the X variables relate to the Y variables.

• Prediction for remaining 15 compounds

• Prediction for remaining 15 compounds

유준, Copyright © 24

- Approximate confidence interval/regions based on distribution assumption
	- Since t_a $(= \mathbf{p}_a^T \mathbf{x})$ is a linear function of many x's, by the **Central Limit Theorem**, $t_a \sim N\left(0, \sigma_t^2\right)$ even if the individual x's are not normally distributed.
	- \rightarrow Use normal theory (or t-distribution if # observation is not large) to obtain confidence intervals/regions for t_a 's

※Confidence interval: for single variable

 $\mathcal X$ Joint confidence interval for more than two variable? \rightarrow confidence region

1. 100(1- α)% confidence interval of t_a

 $\pm t_{\alpha/2} (df) \cdot s_{_{t_a}}$

Value that depends on P.D.F of the statistic & confidence level α

Standard error of the statistic

2. Joint $100(1-\alpha)$ % confidence region of t's

$$
T^{2} = (\mathbf{x} - \overline{\mathbf{x}})^{T} \mathbf{S}_{\mathbf{x}}^{-1} (\mathbf{x} - \overline{\mathbf{x}})
$$

\n
$$
\mathbf{S}_{\mathbf{x}} = \hat{\Sigma}_{\mathbf{x}} = \frac{1}{N} \mathbf{X}^{T} \mathbf{X} = \frac{1}{N} \mathbf{P} (\mathbf{T}^{T} \mathbf{T}) \mathbf{P}^{T} = \mathbf{P} \mathbf{S}_{t} \mathbf{P}^{T}
$$

\n
$$
T^{2} = (\mathbf{x} - \overline{\mathbf{x}})^{T} \mathbf{P} \mathbf{S}_{t}^{-1} \mathbf{P}^{T} (\mathbf{x} - \overline{\mathbf{x}})
$$

\n
$$
= \mathbf{t}^{T} \mathbf{S}_{t}^{-1} \mathbf{t}
$$

\n
$$
= \sum_{a=1}^{K} \frac{t_{a}^{2}}{s_{t_{a}}^{2}}
$$

\n
$$
\mathbf{S}_{t} = \begin{bmatrix} s_{t_{1}}^{2} & 0 & \cdots & 0 \\ 0 & s_{t_{2}}^{2} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & s_{t_{K}}^{2} \end{bmatrix}
$$

 $\sqrt{\text{statistic} \pm (A)} \times \sqrt{\sigma_{\text{statistic}}}$

• Upper $100(1-\alpha)$ % confidence limit on T² is given by

$$
T_{\alpha}^{2} = \frac{(N-1)(N+1)K}{N(N-K)}F_{\alpha}(K, N-K)
$$

• If only A component are used,

• Or in space of t_1 , t_2 , ...

유준, Copyright © 28

3. SPE confidence interval (by Jackson, 1991)

$$
Q = (\mathbf{x} - \hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}}) (\equiv SPE)
$$

Critical upper $100(1-\alpha)$ % confidence limit on Q is give by

$$
Q_{\alpha} = \theta_1 \left[\frac{Z_{\alpha} \sqrt{2\theta_2 h_0^2}}{\theta_1} + \frac{\theta_2 h_0 (h_0 - 1)}{\theta_1^2} + 1 \right]^{1/h_0}
$$

Where

$$
\theta_1 = \sum_{a=A+1}^{K} \lambda_a = Tr(\mathbf{E}) \qquad \theta_3 = \sum_{a=A+1}^{K} \lambda_a^3 = Tr(\mathbf{E}^3)
$$

$$
\theta_2 = \sum_{a=A+1}^{K} \lambda_a^2 = Tr(\mathbf{E}^2) \qquad h_0 = 1 - \frac{2\theta_1\theta_3}{3\theta_2}
$$

※ Some S/W's use resampling methods (bootstrap, jackknife) to calculate C.I.

Readings

- Theory
	- Burnham, A.J., Viveros, R., MacGregor, J.F., "Frameworks for latent variable multivariate regression," J. Chemometrics **10**, 31-45, (1996)
	- Hoskuldsson, A., "PLS regression methods" J. Chemometrics **2**, 211- 228, (1988)
- General
	- Wold, S., Sjöström, M., and Eriksson, L., "PLS regression: A basic tool of chemometrics," Chemometrics and Intelligent Laboratory Systems, 58, 109-130, (2001)
- Applications
	- Gossen, P.D., MacGregor, J.F., Pelton, R.H., "composition and particle diameter for styren/methyl methacrylate copolymer latex using UV and NIR spectroscopy," applied spectroscopy, **47**(11), 1852-1870
	- MacGregor, J.F., Jaeckle, D., Kiparissides, C. and Koutoudi, M., "process monitoring and diagnosis by multi-block PLS methods," AIChE J., 40(5) 826-838, (1994)