Multivariate statistical methods for the analysis, monitoring and optimization of processes

Jay Liu Dept. of Chemical Engineering Pukyong National University

3. Partial Least Squares

We will cover

Multiple Linear Regression (least squares) [MLR]

Principal Component Regression [PCR]

Partial Least Squares or Projection to Latent Structures [PLS]

Quantitative modeling

- Relationships between two sets of multivariate data,
 X and Y
 - In process modeling and optimization
 - Process variables
 - Chemical composition physical measurements
 - Chemical structure
 - In multivariate calibration signals (spectra)

- \leftrightarrow yield / quality
- \leftrightarrow quality
 - biological activity
- reactivity propertiesbiological activity
- concentrations
 energy contents, etc

Quantitative modeling

Μ

• Starting point

Objects (cases, samples, rows, ...)

- Analytical samples
- Process time points
- Trials (experiment runs)

Variables (tags, properties, columns, ...)

- Sensors (T, P, flow, pH, conc., ...)
- Spectra, chromatograms, ...
- quality measures, yields, costs, ...

X: what is "always" availableY: what is "not always" available

$$\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b}$$
$$\mathbf{B} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{Y}$$

- Can't remember?
- Let's review engineering statistics

Matrix representation of MLR (M=1)

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_m x_m + e$$

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{m1} \\ 1 & x_{12} & \cdots & x_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1n} & \cdots & x_{mn} \end{bmatrix} \quad \begin{array}{c} \mathbf{y}^T = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} \\ \mathbf{b}^T = \begin{bmatrix} b_0 & b_1 & \cdots & b_m \end{bmatrix} \\ \mathbf{e}^T = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix} \end{array}$$

m+1: number of coefficients n: number of data points

• Example

- Fitting quadratic polynomials to five data points

$$\begin{vmatrix} x \\ y \end{vmatrix} \begin{vmatrix} -1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\ 1.0 & 0.5 & 0.0 & 0.5 & 2.0 \end{vmatrix}$$
$$y = b_0 + b_1 x + b_2 x^2 + e$$

 $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$

$$\begin{bmatrix} \overline{1.0} \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.5 \\ 2.0 \end{bmatrix} = \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_1 \\ b_2 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \end{bmatrix}$$

Three unknowns Five equations

• Solutions

Sum of squares of errors

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$$

$$S_r = \sum e_i^2 = \mathbf{e}^T \mathbf{e} = (\mathbf{y} - \mathbf{X}\mathbf{b})^T (\mathbf{y} - \mathbf{X}\mathbf{b})$$

$$\frac{\partial S_r}{\partial \mathbf{b}} = 0 \quad \longrightarrow (\mathbf{X}^T \mathbf{X})\mathbf{b} = \mathbf{X}^T \mathbf{y}$$

• 1. LU decomposition or other methods to solve L.A.E

$$(\mathbf{X}^T\mathbf{X})\mathbf{b} = \mathbf{X}^T\mathbf{y} \implies \mathbf{A}\mathbf{x} = \mathbf{b}^{"}$$

• 2. Matrix inversion

$$(\mathbf{X}^T \mathbf{X})\mathbf{b} = \mathbf{X}^T \mathbf{y} \implies \mathbf{b} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

What if X's are correlated

• High/no correlation between x₁ and x₂

$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} 1.0000 & 0.9999 \\ 0.99999 & 1.0000 \end{bmatrix}$	$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} 1.0000 & 0.0\\ 0.0 & 1.0000 \end{bmatrix}$
$\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1} = \begin{bmatrix} 5000.25 & -4999.75 \\ -4999.75 & 5000.25 \end{bmatrix}$	$\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1} = \begin{bmatrix} 1.0 & 0.0 \\ 0.0 & 1.0 \end{bmatrix}$

• What if very small (measurement) noises added to X

$\mathbf{X}^T \mathbf{X} =$	1.0001	0.9999		$\mathbf{X}^T \mathbf{X} =$	1.0000	0.0	
	0.9999	1.0000			0.0	1.0001	

• What will happen to your MLR model?

What if X's are correlated

- If high correlation among columns in **X**:
 - unstable solutions for **b**
 - predictions uncertain also
- What to do about it?
 - Select uncorrelated columns from **X**
- Other issues:
 - X has (measurement) error; MLR assumes it doesn't.
 - MLR cannot handle missing values

PCR and PLS can avoid these drawbacks.

What if X's are correlated

• Geometrically speaking

High correlation between x_1 and x_2

Two step model:

1. $\mathbf{T} = \mathbf{XP}$

2. $\hat{\mathbf{Y}} = \mathbf{T}\mathbf{B}$ and \mathbf{B} can be calculated as, $\mathbf{B} = (\mathbf{T}^T\mathbf{T})^{-1}\mathbf{T}^T\mathbf{Y}$

- Two blocks, **X** and **Y**
- Objective: model both X and Y and the relationship between **X** and **Y**
- X summarized by PC scores (t's) in matrix T

T = XP

• PC scores used as independent variables in MLR

$$\hat{\mathbf{Y}} = \mathbf{T}\mathbf{b}$$
, where $\mathbf{B} = \left(\mathbf{T}^T\mathbf{T}\right)^{-1}\mathbf{T}^T\mathbf{Y}$

- Building PCR model
 - Indirect modeling (no direct modeling between **x**'s and **y**'s)

 $\mathbf{T} = \mathbf{X}\mathbf{P}$ $\hat{\mathbf{Y}} = \mathbf{T}\mathbf{b}, \text{ where } \mathbf{B} = \left(\mathbf{T}^{T}\mathbf{T}\right)^{-1}\mathbf{T}^{T}\mathbf{Y}$

- Advantages:
 - Columns in **T** are orthogonal
 - Can Handle missing values
 - T has much less error than X
 - Less need for variable selection

유준, Copyright ©

- Using a PCR model: can check consistency before predicting y's
 - Check SPE_{new}
 - Check T²_{new}
- Projection to latent structures (PLS) aka Partial least squares
 - better alternative to PCR
 - Indirect modeling (inner model and outer model)
 - Idea?
 - Build a regression model between scores of X and Y.

- 2 blocks of data
- Often used to predict Y given X
- Also used for monitoring, optimization, product development

- PLS
 - Generalization of PCA to deal with the relationship $\mathbf{X} \rightarrow \mathbf{Y}$
- Advantages over PCR:
 - Has a model of Y space.
 - Can handle correlation in **Y**.
- Assumes there is error both in **X** and in **Y**

- Extracts each component sequentially
- Use cross-validation to check the number of components
- Scores calculated from X and Y simultaneously
- Makes engineering sense: system is driven (moved around) by the same underlying latent variables

- Objective function for PCA: best explanation of Xspace
 - Optimization formulation of PCA
- Objective function for PLS: has 3 parts
 - 1. Best explanation of the X-space
 - 2. Best explanation of the **Y**-space
 - 3. Maximize relationship between X- and Y-space

Review of PCA formulation

• For PCA: best explanation of X-space:

$$\underset{\mathbf{p}_{a}}{\arg\max}\left(\mathbf{t}_{a}^{T}\mathbf{t}_{a}\right) \quad \text{s.t } \mathbf{p}_{a}^{T}\mathbf{p}_{a}=1.0$$

- gives greater variance of \mathbf{t}_a (variance proportional to $\mathbf{t}_a^T \mathbf{t}_a$)
- How do we get the scores?

•
$$\mathbf{t}_a = \mathbf{X}_a \mathbf{p}_a$$

Back to PLS

- 1. PLS scores explain X:
 - $\mathbf{t}_a = \mathbf{X}_a \mathbf{w}_a$ for the **X**-space
 - $\max(\mathbf{t}_a^T \mathbf{t}_a)$ subject to $\mathbf{w}_a^T \mathbf{w}_a = 1.0$
- 2. PLS scores also explain Y:
 - $\mathbf{u}_{a} = \mathbf{Y}_{a}\mathbf{c}_{a}$ for the **Y**-space
 - $\max\left(\mathbf{u}_{a}^{T}\mathbf{u}_{a}\right)$ subject to $\mathbf{c}_{a}^{T}\mathbf{c}_{a}=1.0$
- 3. PLS maximizes relationship between X- and Y-space
 - How?

PLS: maximize relationship

- We have two scores: **t**_a and **u**_a
 - t_a: summary of the X-space
 - u_a: summary of the Y-space
- The objective function of PLS:
 - Maximizes covariance: Cov (t_a, u_a)
 - This actually does three simultaneous things ...

$$Cov(\mathbf{t}_{a},\mathbf{u}_{a}) = \varepsilon \left\{ \left(\mathbf{t}_{a} - \overline{\mathbf{t}}_{a}\right) \left(\mathbf{u}_{a} - \overline{\mathbf{u}}_{a}\right) \right\}$$
$$= \frac{1}{N} \mathbf{t}_{a}^{T} \mathbf{u}_{a}$$

PLS: maximize relationship

Correlation is easier to interpret: between -1 and +1

$$\operatorname{Corr}(\mathbf{a}, \mathbf{b}) = \frac{\operatorname{Cov}(\mathbf{a}, \mathbf{b})}{\sqrt{\operatorname{Var}(\mathbf{a})} \cdot \sqrt{\operatorname{Var}(\mathbf{b})}}$$

$$\operatorname{Cov}(\mathbf{a}, \mathbf{b}) = \operatorname{Corr}(\mathbf{a}, \mathbf{b}) \cdot \sqrt{\operatorname{Var}(\mathbf{a})} \cdot \sqrt{\operatorname{Var}(\mathbf{b})}$$

$$\operatorname{Cov}(\mathbf{t}_{a}, \mathbf{u}_{a}) = \operatorname{Corr}(\mathbf{t}_{a}, \mathbf{u}_{a}) \cdot \sqrt{\operatorname{Var}(\mathbf{t}_{a})} \cdot \sqrt{\operatorname{Var}(\mathbf{u}_{a})}$$

$$\operatorname{Cov}(\mathbf{t}_{a}, \mathbf{u}_{a}) = \operatorname{Corr}(\mathbf{t}_{a}, \mathbf{u}_{a}) \cdot \sqrt{\operatorname{Var}(\mathbf{t}_{a})} \cdot \sqrt{\operatorname{Var}(\mathbf{u}_{a})}$$

PLS: maximize relationship

- Maximizing covariance between \mathbf{t}_a and \mathbf{u}_a is actually: $Cov(\mathbf{t}_a, \mathbf{u}_a) = Corr(\mathbf{t}_a, \mathbf{u}_a) \cdot \sqrt{\mathbf{t}_a^{T} \mathbf{t}_a} \cdot \sqrt{\mathbf{u}_a^{T} \mathbf{u}_a}$
 - 1. Explaining X-space: given by $\mathbf{t}_a^{\mathsf{T}}\mathbf{t}_a$
 - 2. Explaining **Y**-space. given by $\mathbf{u}_a^{\mathsf{T}}\mathbf{u}_a$
 - 3. Maximizing relationship between X- and Y-space: Corr $(\mathbf{t}_a, \mathbf{u}_a)$
 - Footnotes:
 - The above description is for SIMPLS (simple PLS)
 - The other variant of PLS is a little different (NIPALS)
 - SIMPLS = NIPALS when M = 1

- For each matrix **X** and **Y**, we have K- and M-dimensional space.
- Each object is one point in the

X- and **Y**- space.

• X and Y are two connected swarm of points in these two spaces.

- Mean-centering and scaling: same as in PCA.
- Calculate the average of each variable.
- These averages are subtracted from **X** and **Y**. And then, scaled to unit variance (usually)

유준, Copyright ©

- 1st PLS component is a line in **X** and **Y** spaces, through the average points, such that
- 1. The lines well approximate the data
- 2. The projection (\mathbf{t}_1 and \mathbf{u}_2) are well correlated. (see next slide)

 The projected coordinates in the two spaces (u₁ and t₁ in Y and X are correlated in the inner relation

 $u_{i1} = t_{i1} + h_i$

(h_i us a residual)

- The 2nd PLS component: lines in the **X** and **Y** spaces, through the average.
- The lines in **X**-space are orthogonal. Lines in the **Y**-space are **not** orthogonal.
- These lines improve the approximation and the correlation as much as possible.

• The 2^{nd} projection coordinates (u_2 and t_2) are correlated, but usually less well than the first.

• The PLS components together form planes (or hyperplanes) in **X** and **Y**-space.

• The variability around the X-plane is used to calculate a tolerance interval within which new objects similar or the training set (calibration set) will be situated.

• For a new object,

•By inserting the **x**-values of a new object in X-space, we obtain its $t_1 \& t_2$, which give predicted values of $u_1 \& u_2$, which give predicted values of **Y**.

• Summary

- *K*, *M*: number of X, Y variables
- N: number of objects
- A: number of PLS components
- *k*(=1,2,...,*K*), *m*(=1,2,...,*M*): indices for X and Y variables
- T, U: score matrices of X and Y
- **P**: loading matrix
- W: X-weight matrix
- **C**: Y-weight matrix

- Summary
 - 1. Preprocessing
 - 2. PLS projection of data (X and Y) onto hyperplanes

- 3. Scores, **t** and **u** are coordinates in the hyperplanes.
- 4. Loadings **p** and weights **w** and **c**Define the direction of thehyperplane.
- 5. PLS is also a regression model.

 $X = TP^{T} + E$ $Y = UC^{T} + F$ $Y = TC^{T} + F'$ U = T + HY = XB + E $B = W(P^{T}W)^{-1}C^{T}$