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3. Partial Least Squares 

We will cover …. 
Multiple Linear Regression (least squares) [MLR] 
Principal Component Regression [PCR] 
Partial Least Squares or Projection to Latent Structures [PLS] 
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Quantitative modeling 

• Relationships between two sets of multivariate data, 
X and Y 
• In process modeling and optimization 

• Process variables  ↔ yield / quality 
• Chemical composition  ↔ quality 
 physical measurements   biological activity 
• Chemical structure  ↔ reactivity properties 
        biological activity 
• In multivariate calibration 
 signals (spectra)    ↔ concentrations 
       energy contents, etc 
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Quantitative modeling 

• Starting point 
 
 
 
 

• Data set = tables (matrices) of 
N rows (objects, samples, …) and 
K & M columns (variables, 
properties, …) 
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Objects (cases, samples, rows, …) 
• Analytical samples 
• Process time points 
• Trials (experiment runs) 
 

Variables (tags, properties, 
columns, …) 
• Sensors (T, P, flow, pH, conc., …) 
• Spectra, chromatograms, … 
• quality measures, yields, costs, … 
 

X: what is “always” available 
Y: what is “not always” available 



 
 
 
 

 
 

 
• Can’t remember? 
• Let’s review engineering statistics 

Multiple linear regression 
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Multiple linear regression 

•  Matrix representation of MLR (M=1) 
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Multiple linear regression 

• Example 
– Fitting quadratic polynomials to five data points 
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Multiple linear regression 

• Solutions 
 
 
 
 

• 1. LU decomposition or other methods to solve L.A.E 
 

• 2. Matrix inversion 
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What if X’s are correlated 

• High/no correlation between x1 and x2 

 
 

 
• What if very small (measurement ) noises added to X 

 
 
 
 

• What will happen to your MLR model? 
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What if X’s are correlated 

• If high correlation among columns in X: 
• unstable solutions for b 
• predictions uncertain also 

• What to do about it?  
• Select uncorrelated columns from X 

• Other issues: 
• X has (measurement) error; MLR assumes it doesn't. 
• MLR cannot handle missing values 

 

PCR and PLS can avoid these drawbacks. 
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What if X’s are correlated 
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• Geometrically speaking 

High correlation between x1 and x2 



Principal component regression 
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Principal component regression 

• Two blocks, X and Y 
• Objective: model both X and Y and the relationship 

between X and Y 
 

• X summarized by PC scores (t’s) in matrix T 
    T = XP 
• PC scores used as independent variables in MLR 
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Principal component regression 

• Building PCR model 
• Indirect modeling (no direct modeling between x’s and y’s) 

 
 
 

• Advantages: 
• Columns in T are orthogonal 
• Can Handle missing values 
• T has much less error than X 
• Less need for variable selection 
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Principal component regression 

 

유준, Copyright © 15 



Principal component regression 

• Using a PCR model: can check consistency before 
predicting y’s 
• Check SPEnew 

• Check T2
new 

• Projection to latent structures (PLS) aka Partial least 
squares 
• better alternative to PCR 
• Indirect modeling (inner model and outer model) 
• Idea? 

• Build a regression model between scores of X and Y. 
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Projection to Latent Structures (PLS) 
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Projection to Latent Structures (PLS) 

• PLS 
• Generalization of PCA to deal with the relationship X  Y 

• Advantages over PCR: 
• Has a model of Y space. 
• Can handle correlation in Y. 

• Assumes there is error both in X and in Y 
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Projection to Latent Structures (PLS) 
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Projection to Latent Structures (PLS) 

• Objective function for PCA: best explanation of X-
space 
• Optimization formulation of PCA 

• Objective function for PLS: has 3 parts 
1. Best explanation of the X-space 
2. Best explanation of the Y-space 
3. Maximize relationship between X- and Y-space 
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PLS 
 

Projection of X both 
approximates X well and 
correlates with Y (least 
squares fit) 

PCA 
 

Projection of X is an optimal 
approximation of X 



Review of PCA formulation 

• For PCA: best explanation of X-space: 
 
 

• gives greater variance of ta (variance proportional to          ) 
• How do we get the scores? 

• ta = Xapa 
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Back to PLS 

1. PLS scores explain X: 
• ta = Xawa for the X-space 
•   

2. PLS scores also explain Y: 
• ua = Yaca for the Y-space 
•   

3. PLS maximizes relationship between X- and Y-space 
• How? 
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PLS: maximize relationship 

• We have two scores: ta and ua 
• ta: summary of the X-space 
• ua: summary of the Y-space 

• The objective function of PLS: 
• Maximizes covariance: Cov (ta, ua) 
• This actually does three simultaneous things … 
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PLS: maximize relationship 
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PLS: maximize relationship 

• Maximizing covariance between ta and ua is actually: 
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PLS: geometric interpretation 
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• For each matrix X and Y, we 
have K- and M-dimensional space. 
• Each object is one point in the 
X- and Y- space. 
• X and Y are two connected 
swarm of points in these two 
spaces. 

• Mean-centering and scaling: 
same as in PCA. 
• Calculate the average of each 
variable. 
• These averages are subtracted 
from X and Y. And then, scaled to 
unit variance (usually) 



PLS: geometric interpretation 
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• 1st PLS component is a line in X- and Y- spaces, through the 
average points, such that  
1. The lines well approximate the data 
2. The projection (t1 and u2) are well correlated. (see next slide) 



PLS: geometric interpretation 
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u1 

t1 

• The projected coordinates in 
the two spaces (u1 and t1 in Y 
and X are correlated in the 
inner relation 
 

ui1 = ti1 + hi 
 
(hi us a residual) 

Slope = 1.0 



PLS: geometric interpretation 
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• The 2nd PLS component: lines in the X- and Y- spaces, through the average.  
• The lines in X-space are orthogonal. Lines in the Y-space are not orthogonal. 
• These lines improve the approximation and the correlation as much as 
possible. 



PLS: geometric interpretation 
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u1 

t1 

Slope = 1.0 u2 

t2 

Slope = 1.0 

• The 2nd projection coordinates (u2 and t2) are correlated, but usually less 
well than the first. 



PLS: geometric interpretation 
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• The PLS components together form planes (or hyperplanes) in X and Y-
space.  
• The variability around the X-plane is used to calculate a tolerance interval 
within which new objects similar or the training set (calibration set) will be 
situated. 

SPE(DmodX) 

On the model plane (SPE≈0) 
outside of the usual range 



PLS: geometric interpretation 

• For a new object, 
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(1) 

•By inserting the x-values of a new object in X-space, we obtain its t1 & t2, 
which give predicted values of u1 & u2, which give predicted values of Y. 

(2) 

(3) 



Projection to Latent Structures (PLS) 

• Summary  
 
 
 
 

• K, M: number of X, Y variables 
• N: number of objects 
• A: number of PLS components 
• k(=1,2,…,K), m(=1,2,…,M): indices for X and Y variables 
• T, U: score matrices of X and Y 
• P: loading matrix 
• W: X-weight matrix 
• C: Y-weight matrix 
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Projection to Latent Structures (PLS) 

• Summary 
1. Preprocessing 
2. PLS projection of 
data (X and Y) onto 
hyperplanes 
3. Scores, t and u are coordinates  
in the hyperplanes. 
4. Loadings p and weights w and c 
Define the direction of the  
hyperplane. 
5. PLS is also a regression model. 
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