
- Description
  - Three x's: Concentrations of acetic acid, H<sub>2</sub>S, and lactic acid in 30 samples of mature cheddar cheese.
  - One y: a subjective taste value is also provided for each sample.



• Build MLR model

The regression equation is Taste = - 28.9 + 0.31 Acetic + 3.92 H2S + 19.7 Lactic



• Correlation coefficients

|        | Acetic | H2S   |
|--------|--------|-------|
| H2S    | 0.618  |       |
| Lactic | 0.604  | 0.644 |

• Build PCR model with A=1

The regression equation is Taste = 24.5 - 8.41 PC1

PRESS = <u>3495.98</u> R-Sq(pred) = 54.38%

• Build PCR model with A=2

The regression equation is Taste = 24.5 - 8.41 PC1 + 5.25 PC2

S = 10.0740 R-Sq = 64.2% R-Sq(adj) = 61.6% PRESS = 3392.43 R-Sq(pred) = 55.73%

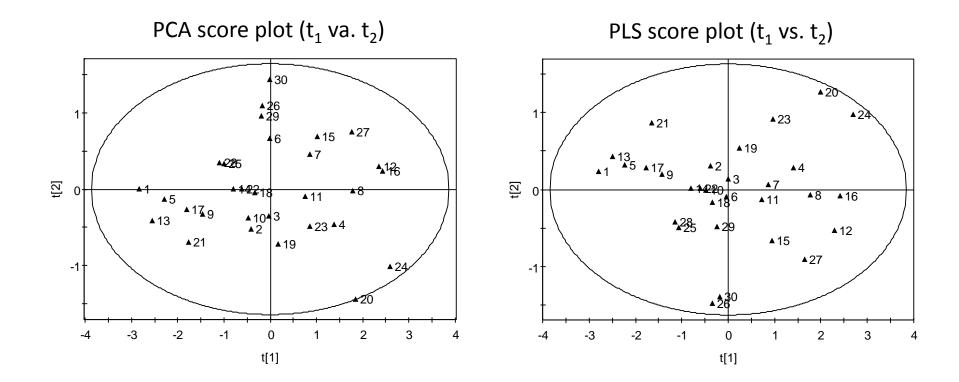
• Build PLS

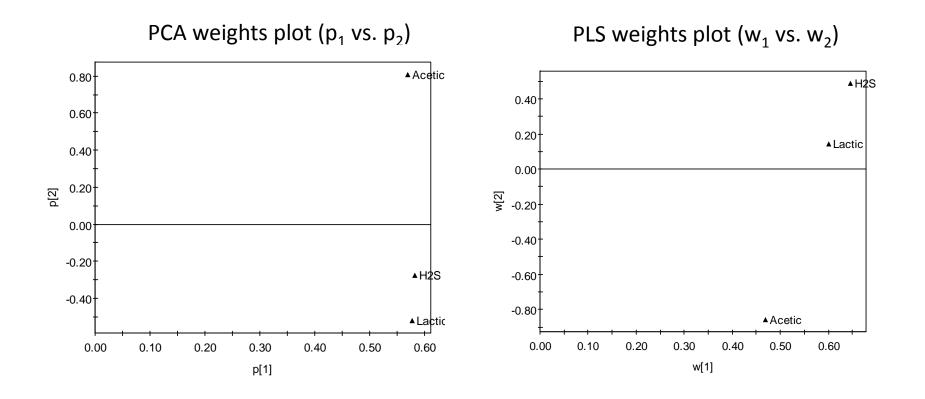
Model Selection and Validation for Taste Components X Variance Error SS R-Sq 1 0.746493 2935.08 0.617007 2 0.879418 2670.75 0.651498 Regression Coefficients

|          |          | Taste        |
|----------|----------|--------------|
|          | Taste    | standardized |
| Constant | -28,9465 | 0.000000     |
| Acetic   | 0.2476   | 0.008694     |
| H2S      | 3.8541   | 0.504261     |
| Lactic   | 20.2673  | 0.377578     |

- Comparison of MLR, PCR, PLS
  - Confidence interval for predicted y
  - Obs. 20, taste = 38.90

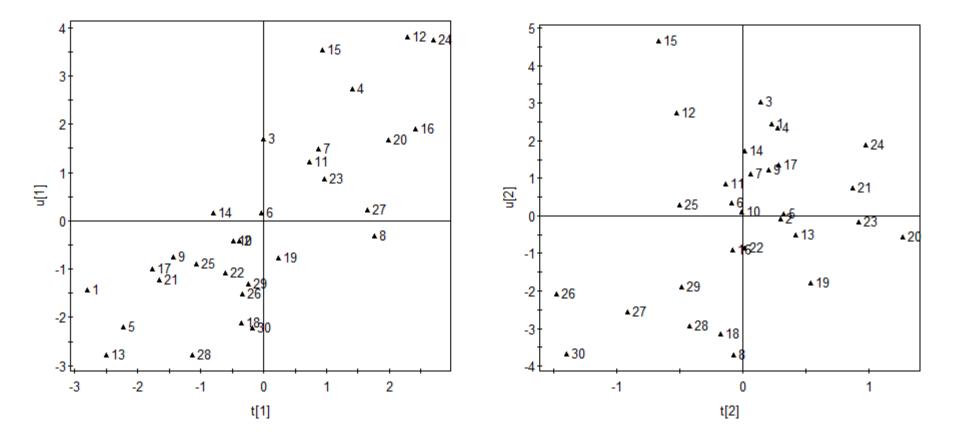
| MLR       |                | PCR (A=1) |                |  |
|-----------|----------------|-----------|----------------|--|
| predicted | C.I (95%)      | predicted | C.I (95%)      |  |
| 47.54     | (36.89, 58.20) | 40.04     | (33.77, 46.30) |  |


| PCR (A=2) |                | PLS (A=2) |                |
|-----------|----------------|-----------|----------------|
| predicted | C.I (95%)      | predicted | C.I (95%)      |
| 47.54     | (36.97, 58.11) | 47.66     | (37.77, 57.55) |


- FYI
  - PLS

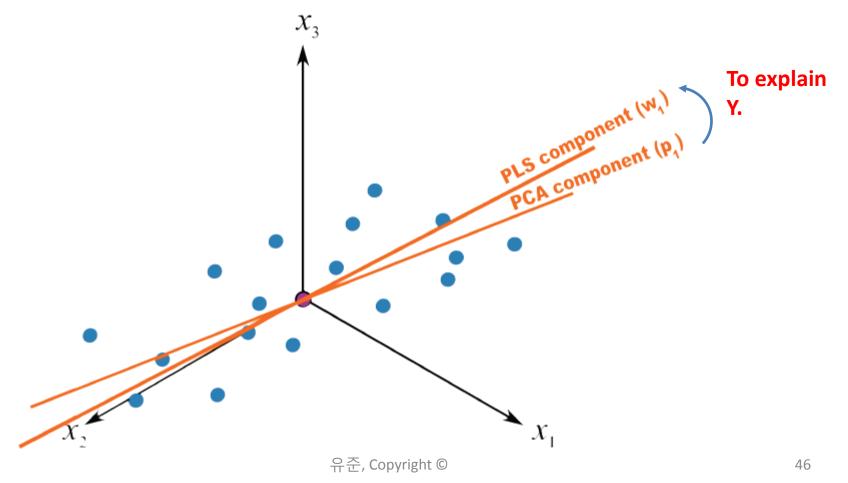
| Α | R2X   | R2X<br>(cum) | eigenvalue | R2Y   | R2Y<br>(cum) | Q2    | Q2<br>(cum) |
|---|-------|--------------|------------|-------|--------------|-------|-------------|
| 1 | 0.746 | 0.746        | 2.239      | 0.617 | 0.617        | 0.592 | 0.592       |
| 2 | 0.133 | 0.879        | 0.399      | 0.034 | 0.651        | 0.025 | 0.602       |

• PCA


| Α | R2X   | R2X<br>(cum) | eigenvalue | Q2     | Q2<br>(cum) |
|---|-------|--------------|------------|--------|-------------|
| 1 | 0.748 | 0.748        | 2.244      | 0.417  | 0.417       |
| 2 | 0.134 | 0.882        | 0.401      | -0.253 | 0.417       |






Different. Why?

• PLS Score plots (**t**<sub>i</sub> vs. **u**<sub>i</sub>)

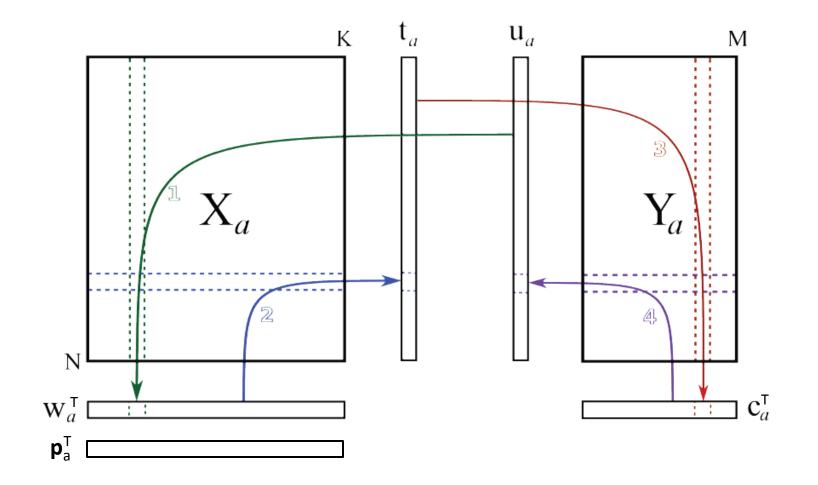


## Interpreting scores in PLS

- PLS scores interpreted exactly the same as PCA scores
- ▶ Verify correlation: plot  $\mathbf{t}_a$  against  $\mathbf{u}_a$ : 45 degree line
- Usually just visualize the t<sub>a</sub> scores



## Interpreting the loadings in PLS


- The loadings: w<sub>a</sub> (usually called weights in PLS)
- Interpreted in the same way as PCA loadings
- Weights for X and for Y: superimpose them
  - ► w∗ weights for X
  - $\blacktriangleright$  c weights for Y
  - called a w \* c plot

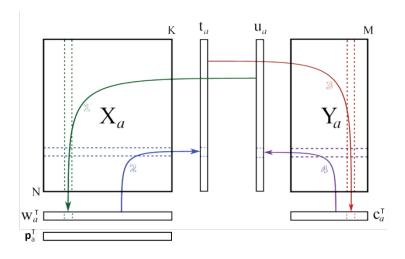
Where did w\* come from?

 $\blacktriangleright \mathbf{w}_{*1} = \mathbf{w}_1$ 

- $\mathbf{w}_{*a} \neq \mathbf{w}_{a}$  for a > 1
- Explained next

• NIPALS algorithm




- (0. start with **u**: a column of **Y**)
- 1. Regress columns of **X** on **u**:  $\mathbf{w} = \mathbf{X}^T \mathbf{u} / \mathbf{u}^T \mathbf{u}$
- 1-1. Normalize **w**:  $\|\mathbf{w}\| = 1.0$
- 2. Calculate scores **t**:  $\mathbf{t} = \mathbf{X}\mathbf{w}/\mathbf{w}^T\mathbf{w}$
- 3. Regress columns of **Y** on **t**:  $\mathbf{c} = \mathbf{Y}^T \mathbf{t} / \mathbf{t}^T \mathbf{t}$
- 4. Calculate new **u**:  $\mathbf{u} = \mathbf{Y}\mathbf{c}/\mathbf{c}^T\mathbf{c}$
- 5. Repeat 1 ~ 4 until converge
- 6. Calculate X loadings after convergence:  $\mathbf{p} = \mathbf{X}^T \mathbf{t} / \mathbf{t}^T \mathbf{t}$

7. Deflate **X** and **Y** (take residuals):

$$\mathbf{E}_{1} = \mathbf{X} - \hat{\mathbf{X}} = \mathbf{X} - \mathbf{t}\mathbf{p}^{T}$$
$$\mathbf{F}_{1}^{'} = \mathbf{Y} - \hat{\mathbf{Y}} = \mathbf{Y} - \mathbf{t}\mathbf{c}^{T}$$

8. Set X = E<sub>1</sub> & Y = F'<sub>1</sub>; go to step 1 and iterate for next component

- Difference between **p** and **w** 
  - w: regression coefficients of columns of X on u.
  - p: regression coefficients of columns of X on t and is
    Computed only at convergence.



- **tp**<sup>T</sup> is best approximation of **X** at each stage.
- Therefore **p** is used to calculate residuals.

$$\mathbf{X}_a = \mathbf{X}_{a-1} - \mathbf{t}_a \mathbf{p}_a^T$$

- w\*?
  - Calculated on deflated matrices
    - $\mathbf{t}_1 = \mathbf{X}_{a=1}\mathbf{w}_1 = \mathbf{X}\mathbf{w}_1$
    - $\mathbf{t}_2 = \mathbf{X}_{a=2}\mathbf{w}_2 = (\mathbf{X} \mathbf{t}_1\mathbf{p}_1^{\mathsf{T}})\mathbf{w}_2$
  - w<sub>2</sub>: relates score t<sub>2</sub> to X<sub>a=2</sub>
  - This is hard to interpret. We would like

• 
$$\mathbf{t}_1 = \mathbf{X}_{a=1} \mathbf{w}_1 = \mathbf{X} \mathbf{w}_1^*$$

• 
$$\mathbf{t}_2 = \mathbf{X}_{a=2}\mathbf{w}_2 = \mathbf{X}\mathbf{w}_2^*$$

• Compare to PCA:

# In the next lecture

- A bit more on PLS
- Tutorials
- Process monitoring (MSPC)
- Assignment #2