Lecture 2. Sorption and Sorbents

- Sorption
 - Adsorption
 - Ion-exchange
 - Chromatography
- Regeneration
- Sorbents
 - Adsorbents
 - lon exchangers
 - Sorbents for chromatography

Adsorption

- The binding (attachment) of molecules or particles (from the gas or liquid phase) to a surface of a solid phase
- Molecules, atoms, or ions in a gas or liquid diffuse to the surface of a solid → bond with the solid surface or are held there by weak intermolecular forces

Ion-Exchange

- lons of positive charge (cations) or negative charge (anions) in a liquid solution replace dissimilar and displaceable ions of the same charge contained in a solid ion exchanger
- lon exchanger contains immobile, insoluble, and permanently bound co-ions of the opposite charge
- Water softening by ion exchange
 Ca²⁺ (aq) + 2NaR (s) ↔ CaR₂ (s) + 2Na⁺ (aq)

Chromatography

- The solutes move with an inert (eluting fluid) at different rates because of repeated sorption, desorption cycles
- The sorbent may be a solid adsorbent, an insoluble, nonvolatile, liquid absorbent contained in the pores of a granular solid support, or an ion exchanger

Regeneration

 Adsorption process: the sorbed substances are desorbed and recovered to reuse the adsorbent

lon-exchange process: replace ions using solutions (e.g. H₂SO₄ for cation, NaOH for anion resins)

Chromatography: regeneration occurs continuously, but at

changing locations

Sorbents

- Requirements for sorbents
 - High selectivity to enable sharp separations
 - High capacity to minimize the amount of sorbent needed
 - Favorable kinetic and transport properties for rapid sorption
 - Chemical and thermal stability
 - Hardness and mechanical strength to prevent crushing and erosion
 - Free-flowing tendency for ease of filling or emptying vessels
 - High resistance to fouling for long life
 - No tendency to promote undesirable chemical reactions
 - Capability of being regenerated
 - Low cost

Adsorbents

Commercial porous adsorbents

Adsorbent	Nature	Pore diameter d _p , Å	Surface area S _g , m²/g
Activated alumina (Al ₂ O ₃)	Great affinity for water	10-75	320
Silica gel (SiO ₂) Small pore Large pore	High affinity for water and other polar compounds	22-26 100-150	750-850 300-350
Activated carbon Small pore Large pore	Hydrophobic (affinity for nonpolar and weakly polar compounds)	10-25 >30	400-1200 200-600
Molecular-sieve carbon	Hydrophobic	2-10	400
Molecular-sieve zeolites	Polar-hydrophilic, crystalline, highly selective M _{x/m} [(AlO ₂) _x (SiO ₂) _y]zH ₂ O	3-10	600-700

Physisorption vs. Chemisorption

- Physisorption (physical adsorption)
- Intermolecular attractive forces (van der Waals forces) between molecules of a solid and the gas are greater than those between molecules of the gas itself
- The heat of adsorption is close to the heat of vaporization (in the region of 20 kJ/mol)

- Chemisorption (chemical adsorption)
- Involves the formation of chemical bonds between the adsorbent and adsorbate in a monolayer
- The heat of adsorption is much larger than the heat of vaporization (in the region of 200 kJ/mol)

Porosity

Bed porosity (external porosity, interparticle porosity)

$$\varepsilon_b = \frac{\text{volume between particles}}{\text{volume of packed bed}} = 1 - \frac{\rho_b}{\rho_p}$$

Particle porosity (intraparticle porosity)

$$\varepsilon_p = \frac{\text{volume of fluid inside particles}}{\text{volume of particles (solid+fluid)}} = 1 - \frac{\rho_p}{\rho_s}$$

- Specific pore volume $V_p' = \varepsilon_p / \rho_p$
- Specific surface area $S_g = 4\varepsilon_p / \rho_p d_p$

Surface Area and BET Equations (1)

- BET (Brunauer, Emmett, and Teller) method
 - Specific surface area (S_g) can be measured by adsorbing N₂ gas
 - The BET apparatus operates at the normal boiling point of N_2 (77 K)
 - Measuring the equilibrium volume of pure N₂ physically adsorbed at different total pressures
- BET equation

$$\frac{P}{v(P_0 - P)} = \frac{1}{v_m c} + \frac{(c - 1)}{v_m c} \left(\frac{P}{P_0}\right)$$

P: total pressure

 P_0 : vapor pressure of adsorbate

 ν : volume of gas adsorbed at STP (0°C, 1 atm)

 v_m : volume of monomolecular layer of gas adsorbed at STP

$$\frac{P}{v(P_0 - P)} vs. \left(\frac{P}{P_0}\right) \rightarrow v_m \text{ and } c$$

Surface Area and BET Equations (2)

$$S_g = \frac{\alpha v_m N_A}{V}$$

 N_A : Avogadro's number (6.023 × 10²³ molecules/mol)

V: volume of gas per mole at STP (22.4 L/mol)

 α : surface area per adsorbed molecule

$$\alpha = 1.091 \left(\frac{M}{N_A \rho_I} \right)^{2/3}$$
 for spherical molecules

M: molecular weight of the adsorbate

 ρ_L : density of the adsorbate in liquid at the test temperature (g/cm³)

- The BET surface area may not always represent the surface area available for adsorption
- The BET test is reproducible and widely used to characterize adsorbents

Pore Volume

Specific pore volume

$$V_p' = \frac{\left(V_{\rm Hg} - V_{\rm He}\right)}{m_p}$$

- Helium is not adsorbed but fills the pores
- At ambient pressure, mercury cannot enter the pore because of unfavorable interfacial tension and contact angle
- Particle density

$$\rho_p = \frac{m_p}{V_{\rm Hg}}$$

True solid density

$$\rho_s = \frac{m_p}{V_{\text{He}}}$$

Pore Volume Distribution

- Measurement of pore volume distribution
 - Large-diameter pores (>100 Å): mercury porosimetry
 - the extent of mercury penetration into the pores is measured as a function of applied hydrostatic pressure)

- Pores of 15-250 A: gaseous nitrogen desorption
 - an extension of the BET method
 - at $P/P_0 = 1$, the entire pore volume is filled with nitrogen
 - by reducing the pressure in steps, nitrogen is desorbed selectively, starting with larger pores
 - Kelvin equation

$$P_p^s = P^s \exp\left(-\frac{4\sigma v_L \cos \theta}{RTd_p}\right)$$

$$P_p^s : \text{vapor pressure of liquid in pore}$$

$$P_p^s : \text{normal vapor pressure of liquid in pore}$$

$$\text{surface}$$

$$\sigma : \text{surface tension of liquid in pore}$$

$$v_L : \text{molar volume of liquid in pore}$$

 P_p^s : vapor pressure of liquid in pore

и : molar volume of liquid in pore

- Pores of <15 A: molecular sieving, using molecules of different size

Adsorbents (1)

- Activated alumina (Al₂O₃)
 - Made by removing water from hydrated colloidal alumina
 - Moderately high S_a
 - The surface has a strong affinity for water: used for removal of water from gases and liquids
 - Not harmed by immersion in liquid water

- Silica gel (SiO₂)
 - Amorphous solid made from colloidal silica
 - High S_g
 - High affinity for water and other polar compounds
 - Can be damaged by liquid water

Adsorbents (2)

Activated carbon

- Made by carbonizing coconut shells, fruit nuts, wood, coal, lignite, peat, petroleum residues, and bones → partially gasified in a mild oxidizing gas such as CO₂ and steam (activation process: creates desired porosity and surface area, and oxidizes the surface)
- Two commercial grade are available: one with large pores for processing liquids, one with small pores for gas adsorption
- Large S_a, hydrophobic (nonpolar surface)
- Used for purification and separation of gas and liquid mixtures containing nonpolar and weakly polar organic compounds
- The bonding strength of adsorption on activated carbon is low
 - → low heat of adsorption and ease of regeneration
- Molecular-sieve carbon
 - Pores raging 2-10 Å
 - Used for separating O₂ and N₂ based on the different diffusion rates
 - Small pores can be made by depositing coke in the pore mouths of AC

Adsorbents (3)

- Molecular-sieve zeolite
 - Crystalline, three-dimensional cage structure, inorganic polymers of aluminosilicates and alkali or alkali-earth elements (Na, K, and Ca)
 - Formula: M_{x/m}[(AlO₂)_x(SiO₂)_y]·zH₂O
 (M is the cation with valence m, y≥x)
 - The cations balance the charge of the AlO₂ groups (net change of -1)
 - Types based on Si/Al ratio: ~1 A type, 1-1.5 X type, 1.5-3 Y type
 - To activate zeolite, water molecules are removed
 - Highly selective due to the same size apertures (3.8-10 Å)
 - Separation by not only molecular size and shape but also polarity → can separate molecules of similar size

Molecular Sieve Type X

Adsorbents (4)

• Cumulative pore-size distributions of adsorbents

Ion Exchangers (1)

- About 1910, water softeners using zeolites were introduced
 - Unstable in the presence of mineral acids
- In 1935, organic-polymer ion-exchange resins were synthesized
 - Polycondensation of phenol and aldehydes
 - Resin contains either sulfonic (-SO₃-) or amine (-NH₃+) groups
- Today, synthetic, organic-polymer resins based on styrene- or acrylicacid-type monomers are most widely used

• Ion-exchange resins: generally solid gels in spherical or granular form, consisting of (1) a three-dimensional polymeric network, (2) ionic functional groups, (3) counterions, and (4) a solvent

Ion Exchangers (2)

 Strong-acid, cation-exchange resins and strong-base, anion-exchange resins: based on the copolymerization of styrene and a cross-linking agent, divinylbenzene

$$CH = CH_{2} \qquad CH = CH_{2} \qquad \cdots - CH - CH_{2} - CH - CH_{2} - CH - CH_{2} - \cdots$$

$$CH = CH_{2} \qquad CH = CH_{2} \qquad \cdots - CH - CH_{2} - CH - CH_{2} - \cdots$$

$$CH = CH_{2} \qquad \cdots - CH - CH_{2} - CH - CH_{2} - \cdots$$

$$\cdots - CH - CH_{2} - CH - CH_{2} \cdot \cdots$$

 Weakly acid, cation exchangers: sometimes based on the copolymerization of acrylic acid and methacrylic acid

$$\begin{array}{c} \text{CH} = \text{CH}_2 \\ \text{C} = \text{CH}_2 \\ \text{COOH} \end{array} \longrightarrow \begin{array}{c} \text{CH}_3 \\ \text{COOH} \\ \text{CH} = \text{CH}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_3 \\ \text{COOH} \\ \text{COOH} \end{array} \longrightarrow \begin{array}{c} \text{CH}_3 \\ \text{COOH} \\ \text{COOH} \end{array}$$

Ion Exchangers (3)

- To convert the copolymers to water-swellable gels with ion-exchange properties, ionic functional groups are added to the polymeric network
- Sulfonation to the styrene-divinylbenzene copolymer (cation exchanger)

Chloromethylation and amination to an anion exchanger

$$---CH - CH_2 --- \\ + CH_3OCH_2CI \rightarrow CH_2CI$$

$$---CH - CH_2 --- \\ + (CH_3)_3N \rightarrow CH_2CI$$

$$---CH - CH_2 --- \\ + (CH_3)_3N \rightarrow CH_2CI$$

Ion Exchangers (4)

 When saturated with water, ion exchange beads have typical moisture contents from 40 to 65 wt%

- Ion-exchange capacity
 - The maximum value is based on the number of equivalents of mobile charge in the resin
 - 1 mol H⁺: one equivalent, 1 mol Ca²⁺: two equivalents
 - Dry capacity (eq/kg) is fixed, wet capacity (eq/L) depends on water content and degree of swelling

[Example] A commercial ion-exchange resin is made from 88 wt% styrene and 12 wt% divinylbenzene. Estimate the maximum ion-exchange capacity in eq/kg resin.

	М	g	mol
Styrene	104.14	88	0.845
Divinylbenzene	130.18	12	0.092
Total		100	0.937

0.937 equivalent, $0.937 \times 81.07 = 76$ g

Sulfonation on each benzene requires 0.937 mol of H₂SO₄

→ a sulfonic acid group (M = 81.07) and one water molecule

0.937/(100+76) g = 5.3 eq/kg (dry)

Classification of Analytical Chromatographic systems

Chromatographic Separation

- Carrier fluid: mobile phase
 - Gas chromatography: gas carriers are inert and do not interact
 - Liquid chromatography: liquid carriers (solvents) can interact
- Sorbent: stationary phase
 - A solid, a liquid supported on or bonded to a solid, or a gel
- Mechanisms of chromatographic separation
 - Adsorption
 - Ion-exchange
 - Exclusion (sieving)
 - Absorption (partition chromatography)

Sorbents for Chromatography (1)

- Chromatographic column
 - Packed column (>1 mm inside diameter): particle type sorbents
 - Capillary column (<0.5 mm inside diameter): sorbent is the inside wall or a coating on the wall
 - Wall-coated, open-tubular (WCOT): coated capillary column
 - Support-coated, open-tubular (SCOT): the coating is a layer of fine particulate support material
 - Porous-layer, open-tubular (PLOT): the wall is coated with a porous adsorbent only

Sorbents for Chromatography (2)

- Type of chromatography
 - Thin-layer (planar) chromatography: sheets of glass, plastic, or aluminum for sorbent
 - Paper chromatography: a sheet of cellulose material for sorbent
 - High-performance liquid chromatography (HPLC): a pump, rather than gravity, is used to pass a liquid mobile phase

Sorbents for Chromatography (3)

- Adsorbents used in chromatography
 - Porous alumina: polar adsorbent, preferred for the separation of components that are weakly or moderately polar, with more polar compounds; basic adsorbent, preferentially retaining acidic compounds
 - Porous silica gel: less polar than alumina; acidic adsorbent,
 preferentially retaining basic compounds
 - Carbon: nonpolar (apolar), highest attraction for nonpolar molecules
- Liquid chromatography
 - Normal-phase chromatography: stationary phase is more polar than the mobile phase
 - Reverse-phase chromatography (hydrophobic chromatography)
 - The order of elution of solutes can be influenced by the solvent carrier by matching the solvent polarity with the solutes and using more-polar adsorbents for less-polar solutes and less-polar adsorbents for more-polar solutes