Lecture 4. Kinetics and Transport in Sorption (1)

- Mass-Transport Processes in Adsorption
- Convection-Dispersion Model
- Modes of Time-Dependent Sorption Operation
- Chromatogram
- Solute Concentration Distribution
- Separation Efficiency
- Chromatography Resolution

Consecutive Mass-Transport Processes in Adsorption (1)

- 1. Solute transport by bulk flow (convection) and dispersion through interstices of the bed
- 2. External (interphase) solute transport from the bulk flow to the outer perimeter of the adsorbent through a thin film or boundary layer
- 3. Internal (intraphase) solute transport by diffusion in quiescent fluid-filled pores
- 4. Surface diffusion along the internal porous surface of the adsorbent

Consecutive Mass-Transport Processes in Adsorption (2)

- External transport
	- Convective dispersion of the solute within the bulk fluid
	- Diffusion though a boundary layer surrounding adsorbent particles
- Axial dispersion of individual solute molecules in the bulk fluid occurs primarily by microscale, fluid-phase phenomena such as mixing via solid obstructions to flow, eddies, and recirculation from regional pressure gradients
- Boundary-layer transport, internal transport, and surface diffusion: random Brownian motion
- Kinetic interaction depends on solute orientation and frequency of surface collisions
	- Instantaneous for physisorption
	- Can become a controlling step for chemisorption (bond formation)

Solute Concentration and Temperature Profiles

• Regeneration of the adsorbent: the reverse of the four steps occurs, following desorption

- Concentration gradient: usually steepest within the particle
	- \rightarrow The major resistance to mass transfer is in the adsorbent particle
- Temperature gradient: usually steepest in the boundary layer surrounding the particle
	- \rightarrow Resistance to heat transfer is mainly external to adsorbent particle

Convection-Dispersion Model (1)

• Fluid-phase concentration $c_f(z,t)$ for solute convected by dispersed, plug flow of fluid at average interstitial velocity u in the axial direction z **hase concentration c_f(z,t) for solute convected by**
ed, plug flow of fluid at average interstitial velocity is
ection z
 $\frac{f}{f} + u \frac{\partial c_f}{\partial z} - E \frac{\partial^2 c_f}{\partial z^2} = -\frac{1 - \varepsilon_b}{\varepsilon_b} \frac{\partial \overline{c_b}}{\partial t}$

- *ε^b* : fractional interstitial void volume (bed porosity)
- *E* : Fickian, convective, axial-dispersion coefficient
- \overline{c}_b : volume-averaged stationary-phase concentration per unit mass $\overline{}$
- For a spherical particle of radius R_p

$$
\varepsilon_b
$$
: fractional interstitial void volume (bed porosity)
\n E : Fickian, convective, axial-dispersion coefficient
\n \overline{c}_b : volume-averaged stationary-phase concentration per uni
\nspherical particle of radius R_p
\n
$$
\overline{c}_b = \frac{\int_0^{R_p} (4\pi r^2) c_b dr}{(4/3)\pi R_p^3} = \frac{3}{R_p^3} \int_0^{R_p} r^2 c_b dr
$$
 * Superficial ve
\nof the fluid, u

* Superficial velocity of the fluid, $u_s = \varepsilon_b u$

Convection-Dispersion Model (2)

- q (equilibrium loading): mass of solute adsorbed on surfaces of the stationary phase per unit mass of adsorbent
- \bar{c}_b : both adsorbed solute and unadsorbed solute diffusing in the pore volume of the stationary phase ^e *b p f c c* ⁼

At equilibrium in nonadsorbing gel-filtration chromatography, q = 0, $\overline{c}_b = \overline{\varepsilon}_p^* c_f$

• Linear driving force (LDF) approximation

CONVECTION — **DISPECTION** MOGET (equilibrium loading): mass of solute adsorbed on surfaces of
ne stationary phase per unit mass of adsorbent

$$
\therefore
$$
 both adsorbed solute and unadsorbed solute diffusing in the
ore volume of the stationary phase
at equilibrium in nonadsorbing gel-filtration chromatography, $q = 0$, $\overline{c}_b = \varepsilon_p^* c_f$
linear driving force (LDF) approximation

$$
\frac{4}{3}\pi R_p^3 \frac{\partial \overline{c}_b}{\partial t} = -k_{c,tot} 4\pi R_p^2 (\overline{c}_b \alpha - c_f) \quad k_{c,tot}
$$
: overall mass-transfer coefficient
tequilibrium, solute is partitioned between the bulk fluid and
verage stationary–phase loading

$$
\alpha = \frac{c_f}{\overline{c}_b} = \frac{1}{\varepsilon_p^* (1+K_d)} \qquad \frac{K_d : \text{equilibrium distribution coefficient}}{\varepsilon_p^* : \text{inclusion porosity (effective stationary–phase}^2 \over \text{volume fraction accessible to a specific solute})}
$$

$$
\varepsilon_p^* \text{ includes only voids penetrable by a particular solute due to size or sterile hindrance}
$$

• At equilibrium, solute is partitioned between the bulk fluid and average stationary-phase loading $\begin{aligned} \mathcal{L} & = -k_{c,tot} 4\pi R_p^2 (\overline{c}_b \alpha - c_f) & \quad k_{c,tot} : \text{ove} \ \mathcal{L} & = 0, \text{ where } \mathcal$

$$
\alpha = \frac{c_f}{\overline{c}_b} = \frac{1}{\varepsilon_p^*(1 + K_d)} \qquad \frac{K_d : e_0}{\varepsilon_p^* : \text{ir}}
$$

1 K_d : equilibrium distribution coefficient K_d *ε^p ** : inclusion porosity (effective stationary-phase volume fraction accessible to a specific solute) *a s ^d* $\frac{d}{dt} = \frac{c_s}{c_p}$
ase
lute) *k* in the
 $=\varepsilon_p^* c_f$
 $\frac{\text{coefficient}}{\text{C}}$
 $\frac{K_a}{K_a} = \frac{c_s}{c_p}$
 $\frac{K_a}{\text{C}} = \frac{c_s}{c_p}$
 $\frac{K_a}{\text{C}} = \frac{c_s}{c_p}$
 $\frac{K_a}{\text{C}} = \frac{c_s}{c_p}$
 $\frac{K_a}{\text{C}} = \frac{c_s}{c_p}$ the
 $\epsilon_p^* c_f$

fficient
 A
 $=\frac{k_a}{k_d} = \frac{c_s}{c_p}$

phase

solute)

ndrance

*ε^p ** includes only voids penetrable by a particular solute due to size or steric hindrance

Modes of Time-Dependent Sorption Operation

- Frontal: The mobile phase (gas or liquid) is fed continuously to the stationary phase until Frontal: The mobile phase (gas or liquid) is
fed continuously to the stationary phase until
the bed approaches saturation with the solute
- Displacement: Following near-saturation of $\left[\begin{array}{cc} \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{E} \end{array} \right]$ Sorption ability Sorption ability the bed with solute(s), desorption (elution) in $\frac{1}{\sqrt{6}}$ consecutive zones of pure substances is effected by substitution with a more strongly adsorbed solute (displacer)
- Differential (elution): A small pulse of solute \overline{A} dissolved in the mobile phase is loaded onto the bed \rightarrow the solute pulse is carried through $\qquad \qquad$ the bed (eluted) at a rate lower than pure solvent

Chromatogram (1)

• Retention time: the time elapsed from the moment the sample is fed to the column up to the moment the chromatographic zone of the substance output reaches its maximum

$$
t_R = \frac{L}{u_s}
$$
 u_s : average velocity of solute in column

For pulses which are fairly wide

$$
t_R = \frac{L}{u_s} + \frac{t_F}{2}
$$

 t_F : period of the feed pulse $\begin{array}{|c|c|c|}\hline \end{array}$

 $W = 4\sigma$ (σ is the standard deviation of the peak)

• The non-retained peak which exits at t_0 shows when a small, non-retained molecule will exit. t_o is a measure of the void volume between particles and inside the particles.

Chromatogram (2) **Chromatogram (2)**
 $\frac{t_{R,2}-t_0}{t_{R,1}-t_0} = \frac{k_2}{k_1} = \alpha_{21}$
 $\frac{k : \text{equilibrium constant}}{\alpha_{ij} : \text{selectivity}}$
 $k : \text{sharp}$
 $k : \text{starpness depends on column efficiency.}$

Chromatic

$$
\frac{t_{R,2} - t_0}{t_{R,1} - t_0} = \frac{k_2}{k_1} = \alpha_{21}
$$
 $k: \text{equil}$

$$
\frac{k: \text{equil}}{\alpha_{ij}: \text{sele}}
$$

- α_{21} **k**: equilibrium constant k_1 ^{- α_{21}} α_{ij} : selectivity
- **Chromat**
 $\frac{2^{-t_0}}{1-t_0} = \frac{k_2}{k_1} = \alpha_{21}$

Sharpness depends on col **Chromatogram (2)**
 $\frac{t_{R,2}-t_0}{t_{R,1}-t_0} = \frac{k_2}{k_1} = \alpha_{21}$
 t is electivity
 x sharpness depends on column efficiency,

veen the maxima is determined by selectivity • Peak sharpness depends on column efficiency, and the distance between the maxima is determined by selectivity **Chromatogram (2)**
 $=\frac{k_2}{k_1} = \alpha_{21}$ **k**: equilibrium constant

ness depends on column efficiency, and the maxima is determined by selectivity
- Efficiency can be expressed quantitatively by N (the number of theoretical chromatographic plates) $\frac{-t_0}{-t_0} = \frac{k_2}{k_1} = \alpha_{21}$ **k**: equilibrium constant
narpness depends on column efficiency, and
n the maxima is determined by selectivity
cy can be expressed quantitatively by N (the cal chromatographic plates)
 $= \left$

$$
N = \left(\frac{t_R}{\sigma}\right)^2
$$

 σ) in time unit **2** *R* | σ: Stand $N = \left(\frac{t_R}{m}\right)^2$ σ : standard deviation

• Height of the equivalent theoretical plate

$$
H = \frac{L}{N}
$$
 L : column length

$$
H \propto \sigma^2
$$
 \nH is proportional to the variance for chromatographic system

Solute Concentration Distribution

• Sharp-pulse input

$$
c\{z,0\}=\frac{m_0\delta\{z\}}{A\varepsilon_b}
$$

Solution Distribution Concentration Distribute (x, 0)
 ${z, 0} = \frac{m_0 \delta\{z\}}{A \varepsilon_b}$ and $\frac{m_0 : \text{solve mass}}{\delta z}$ and $\frac{a : \text{bed cross-sectional area}}{\delta z}$ and $\frac{a : \text{Dirac delta function (zero everywhere)} }{a z = 0, \text{ where its magnitude is infinite}}$ $\mathcal{E}_{\boldsymbol{b}}$ and δ δ \mathbf{z} δ : Dirac delta function (zero everywhere except δ $\mathbf{0} = \frac{m_0 \sigma v_0}{4}$ \mathbf{A} : bed cross-sectional area **Concentration Distribu**
 *m*₀ $\delta\{z\}$
 $\chi_{\mathcal{E}_b}$
 $\chi_{\mathcal{E}_b}$
 $\chi_{\mathcal{E}_b}$
 $\chi_{\mathcal{E}_b}$
 $\chi_{\mathcal{E}_c}$ $\chi_{\mathcal{E}_c}$: Dirac delta function (zero everywhere its magnitude is infinition for olluted pook **bigation**
 c_{z, 0} = $\frac{m_0 \delta \{z\}}{A \epsilon_b}$ = $\frac{m_0 : \text{solve mass}}{A \epsilon_b}$ = $\frac{m_0 : \text{solve mass}}{A \epsilon_b}$ = $\frac{m_0 : \text{solve mass}}{A \epsilon_b}$ = $\frac{m_0 : \text{source mass}}{A \epsilon_b}$ = \frac *m***⁰** : solute mass at z=0, where its magnitude is infinity) **b**
 c{ z , 0} = $\frac{m_o \delta\{z\}}{A \varepsilon_b}$ = $\frac{m_o \text{ is blue mass}}{A \varepsilon_b}$
 $c = c_{\text{max}} \exp\left(\frac{-x^2}{2\sigma^2}\right)$
 c
 c = $c_{\text{max}} \exp\left(\frac{-x^2}{2\sigma^2}\right)$
 c = $c_{\text{max}} \exp\left(\frac{-x^2}{2\sigma^2}\right)$ **Concentration Distribution**

but
 $\frac{\delta\{z\}}{4\epsilon_b}$ $\frac{m_0: \text{solve mass}}{4 \cdot \text{bed cross-sectional area}}$
 $\frac{\delta\{z\}: \text{Dirac delta function (zero everywhere at z=0, where its magnitude is infinity)} }{\text{at z=0, where its magnitude is infinity)}}$

on for eluted peak
 $\left(\frac{-x^2}{2\sigma^2}\right)$
 Ifrom the peak maximum

• Gaussian solution for eluted peak

$$
c = c_{\max} \exp\left(\frac{-x^2}{2\sigma^2}\right)
$$

 $x:$ deviation from the peak maximum

$$
c\{z,t\} = \frac{m_0 \omega}{A \varepsilon_b \sqrt{2\pi H z_0}} \exp \left[\frac{-(z-z_0)^2}{2H z_0}\right]
$$

 $z_{\textbf{0}}$: mean solute position (*œut*) ω : fraction of solute in the moving fluid ω : fraction of solute in the moving fluid phase at equilibrium

$$
\omega = \frac{1}{1 + \frac{1 - \varepsilon_b}{\varepsilon_b} \frac{1}{\alpha}}
$$

Separation Efficiency (1)

- (Separation efficiency in linear chromatography) $\propto H^{-1}$
- Van Deemter equation

$$
H=A+\frac{B}{u}+Cu
$$

- A: eddy-diffusion, related to channeling through a non-ideal packing
- B: molecular diffusion in the longitudinal direction
- C: mass transfer resistance between mobile and stationary phases ($C = C_m + C_{sm} + C_s$)
	- *C^m* : extraparticle mass transfer (film diffusion) *C*_{*sm*}: diffusion in the stagnant mobile phase (pore diffusion)
	- *C^s* : diffusion on the solid

Separation Efficiency (2)

• Relation between H and overall mass-transfer coefficient, $k_{c,tot}$

Separation of the image. Definition Efficiency (2)
\nation between H and overall mass-transfer coefficient,
$$
k_{c,tot}
$$

\n
$$
H = 2\left(\frac{E}{u} + \frac{\omega(1-\omega)R_{p}u}{3\alpha k_{c,tot}}\right)
$$
\nTransport-rate resistance due to convective dispersion
\n
$$
\frac{1}{k_{c,tot}} = \frac{1}{k_c} + \frac{R_p}{5\varepsilon_p^*D_e} + \frac{3}{R_p k_a \varepsilon_p^*} \left(\frac{K_d}{1+K_d}\right)^2
$$
\nResistance in
\nResistance in
\nextension
\nobondary-layer
\nintaparticle
\ntransport
\ndiffusion
\n

k^c : fluid-phase mass-transfer coefficient *D_e* : effective solute diffusivity in the pore liquid

• Resolution, R: a measure of how completely two neighboring peaks are separated from each other

Chromatography Resolution

\nlution, R: a measure of how completely two neighboring

\ns are separated from each other

\n
$$
R = \frac{2(t_{R,2} - t_{R,1})}{w_1 + w_2}
$$
\n
$$
\begin{cases}\n\sigma = \frac{t_R}{\sqrt{N}} & \text{if } \frac{1}{w_0} \text{ if } w_0 \text{ or } t_{R(v)} \text{ if } w_0 \text{ or }
$$