Lecture 9. Continuous Adsorption Systems

- McCabe-Thiele Method for Purification
- Kremser Method
- McCabe-Thiele Method for Bulk Separation
- Simulated-Moving-Bed Systems
- Models for SMB Systems
 - TMB equilibrium-stage model using a McCabe-Thieletype analysis
 - Steady-state local-adsorption-equilibrium TMB model
 - Steady-state TMB model
 - Dynamic SMB model

Continuous, Countercurrent Operation

- Advantage of continuous, countercurrent operation
 - : countercurrent flow maximizes the average driving force for transport \rightarrow increases adsorbent use efficiency

• McCabe-Thiele and Kremser methods for purification

- If the system is dilute in solute, and solute adsorption isotherms for feed solvent and purge fluid are identical
- The operating and equilibrium lines are straight because of the dilute condition

Concentration in bulk fluid, c

McCabe-Thiele Method for Purification

F. S. and D are solute-

All solute concentrations

free mass flow rates

are per solute-free

carrier

- Position of operating lines based on direction for mass transfer
 - Adsorption operating line lies below the equilibrium line
 - Desorption operating line lies above the equilibrium line
- Adsorption operating line

$$q = \frac{F}{S}(c - c_F) + q_F$$

Desorption operating line

$$q = \frac{D}{S}(c - c_D) + q_R$$

• Equilibrium line

q = Kc

 When c_D and c_R approach zero, in order to avoid a large number of stages:

McCabe-Thiele Method for Desorption at Elevated Temperature

Loading, q

 q_R

- If the temperature or pressure for the two sections can be altered to place the equilibrium line for desorption below that for adsorption → it becomes possible to use a portion of the raffinate for desorption
 - F/S can be greater than D/S
 - With a portion of raffinate used in Bed 2 (DES), the net raffinate product is F-D
 - The two operating lines must intersect at the point (q_R, c_R)
 - By adjusting D/F, intersect point can be moved closer to the origin to increase raffinate purity, c_R, but at the expense of more stages and deeper beds

Kremser Method

• When the equilibrium and operating lines are straight

$$N_{t} = \frac{\ln \left[\frac{c_{1} - q_{1}/K}{c_{2} - q_{2}/K} \right]}{\ln \left[\frac{c_{1} - c_{2}}{q_{1}/K - q_{2}/K} \right]}$$

1 and 2 refer to opposite ends which are chosen so $q_1 > q_2$

 \bullet For a number of theoretical stages, $N_{t},$ in the adsorption or desorption sections

Bed height $L = N_t (\text{HETP})$

- Values of HETP, which depend on mass-transfer resistances and axial dispersion, must be established from experimental measurements
- For large-diameter beds, values of HETP are in the range of 0.5-1.5 ft

McCabe-Thiele Method for Bulk Separation

• Continuous, countercurrent bulk separation for binary mixture

strongly adsorbed than B

- To provide flexibility, a thermal swing is used, with Sections II and III operating at low or ambient temperature, while Sections I and IV operate at elevated temperature
- The top two sections (III and IV) provide a stripping action to produce a product rich in the less strongly adsorbed component B
- The two bottom sections (I and II) provide an enriching action to produce a product rich in component A

Simulated-Moving-Bed Systems (1)

• True-moving bed

Simulated-Moving-Bed Systems (2)

- Difficulties in operating continuous, countercurrent moving-bed (true-moving-bed, TMB) systems: adsorbent abrasion, failure to achieve particle plug flow, fluid channeling
- Continuous, countercurrent operation can be simulated by using a column containing a series of fixed beds and periodically moving the locations at which streams enter and leave the column
 - : simulated moving-bed (SMB) systems
 - Widespread commercial application for liquid separations in the petrochemical, food, biochemical, pharmaceutical, and fine chemical industries
 - An SMB can be treated as a countercurrent cascade of sections (or zones) rather than stages, where stream entry or withdrawal points bound the sections
 - As each section is divided into more subsections, the SMB system more closely approaches the separation achieved in a corresponding TMB

Simulated-Moving-Bed Systems (3)

- By periodically shifting feed and product positions by one port position in the direction of fluid flow, movement of solid adsorbent in the opposite direction is simulated
- Flow rates in the four sections are different

Models for SMB Systems

- Models for designing and analyzing SMBs
 - Models assuming steady-state conditions with continuous, countercurrent flows of fluid and solid adsorbent, approximating SMB operation with a TMB
 - TMB equilibrium-stage models using a McCabe-Thiele-type analysis
 simplest, but difficult to apply to systems with nonlinear adsorptionequilibrium isotherms
 - TMB local-adsorption-equilibrium models
 - : ignoring effects of axial dispersion and fluid-particle mass transfer; useful for establishing reasonable operating flow rates in multiple sections of an SMB (: for many applications, behavior of an SMB is determined largely by adsorption equilibria)
 - TMB rate-based models
 - : account for axial dispersion in the bed, particle-fluid mass-transfer resistances, and nonlinear adsorption isotherms; preferred for a final design
 - SMB rate-based models: apply to transient operation for startup, approach to cyclic steady state, and shutdown

Steady-State Local-Adsorption-Equilibrium TMB Model (1)

• TMB local-adsorption-equilibrium model for a single section

- Assumptions
 - One-dimensional plug flow of both phases with no channeling
 - Constant volumetric flow rates (Q for liquid and ${\rm Q}_{\rm s}$ for solid)
 - Constant external void fraction, ε_b , of solids bed
 - Negligible axial dispersion and particle-fluid masstransfer resistances
 - Local adsorption equilibrium between solute concentrations, c_i, in the bulk liquid and adsorption loading, q_i, on the solid
 - Isothermal and isochoric conditions
- Mass balance

$$Q\frac{dc_i}{dz} - S\frac{dq_i}{dz} = 0$$

Boundary conditions

$$z = 0, c_i = c_{i,\text{in}}$$
 and $z = Z, q_i = q_{i,\text{in}}$

Steady-State Local-Adsorption-Equilibrium TMB Model (2)

• Usefulness of local-equilibrium theory

: approximate determinations of the amount of solid adsorbent and fluid flow rates, in each TMB section, to achieve a perfect separation of two solutes

- Assuming adsorption equilibrium is linear for a dilute feed, with $\rm K_A > \rm K_B$
- Flow rate ratios for each section j

 $m_j = \frac{Q_j}{Q_s} = \frac{\text{volumetric fluid phase flow rate}}{\text{volumetric solid particle phase flow rate}}$

• For local adsorption equilibrium, the necessary and sufficient conditions at each section for complete separation

$K_{\rm A} < m_{\rm I} < \infty$	Ensures that net flow rates of components A and B will be positive (upward) in Section I
$0 < m_{\rm IV} < K_{\rm B}$	Ensures that net flow rates of components A and B will be negative (downward) in Section IV

Steady-State Local-Adsorption-Equilibrium TMB Model (3)

$$K_{\rm B} < m_{\rm II} < K_{\rm A}$$

 $K_{\rm B} < m_{
m III} < K_{\rm A}$

Ensure sharpness of the separation by causing net flow rates of A and B to be negative (downward) and positive (upward), respectively, in the two central Sections II and III

- Inequality constraints can be converted to equality constraints using the safety margin, $\boldsymbol{\beta}$

 $Q_{\rm C}$: fluid recirculation rate before adding makeup desorbent

• By an overall material balance, $Q_{\rm D} = Q_{\rm E} + Q_{\rm R} - Q_{\rm F}$

Steady-State Local-Adsorption-Equilibrium TMB Model (4)

• Triangle method

- If values m_{II} and m_{III} within the triangular region are selected, a perfect separation is possible
- If $m_{II} < K_B$, some B appears in extract
- If $m_{III} > K_A$, some A appears in raffinate
- If $m_{II} < K_B$ and $m_{III} > K_A$, extract contains some B and raffinate contains some A
- Safety margin, $1 \le \beta \le \sqrt{K_A/K_B}$
 - Above a maximum β , some sections will encounter negative fluid flow rates, and when $\beta < 1$, perfect separation will not be achieved
 - As the value of β increases from minimum to maximum, fluid flow rates in the sections increase, often exponentially
 - As separation factor $K_A/K_B \rightarrow$ 1, permission range of β becomes smaller

Steady-State TMB Model (1)

- Unlike the local-adsorption-equilibrium model, axial dispersion and fluid-particle mass transfer are considered
- Mass-balance equation for the bulk fluid phase, f

$$-D_{L_j}\frac{d^2c_{i,j}}{dz^2} + u_{f_j}\frac{dc_{i,j}}{dz} + \frac{(1-\varepsilon_b)}{\varepsilon_b}J_{i,j} = 0$$

 J_i : mass-transfer flux between the bulk fluid phase and the sorbate in the pores u_f : interstitial fluid velocity $u_{f_j} = Q_j / \varepsilon_b A_b$

• Mass-balance for sorbate, s, on the solid phase

$$u_s \frac{d\overline{q}_{i,j}}{dz} - J_{i,j} = 0 \qquad u_s : \text{ true moving-solid velocity } \quad u_s = \frac{Q_s}{(1 - \varepsilon_b)A_b}$$

• Fluid-to-solid mass transfer

$$J_{i,j} = k_{i,j} \left(q_{i,j}^* - \overline{q}_{i,j} \right)$$

• Adsorption isotherm $q_{i,j}^* = f\{ all c_{i,j} \}$

Steady-State TMB Model (2)

- Boundary conditions
 - At the section entrance, z=0 (accounting for axial dispersion)

$$\boldsymbol{u}_{f_j}(\boldsymbol{c}_{i,j,0} - \boldsymbol{c}_{i,j}) = -\varepsilon_b \boldsymbol{D}_{L_j} \frac{d\boldsymbol{c}_{i,j}}{dz}$$

- At Sections I and II where extract is withdrawn

$$c_{i,I,z=L_j} = c_{i,II,z=0}$$
 $q_{i,I,z=L_j} = q_{i,II,z=0}$

- At Sections III and IV where raffinate is withdrawn

$$c_{i,\mathrm{III},z=L_j} = c_{i,\mathrm{IV},z=0} \qquad q_{i,\mathrm{III},z=L_j} = q_{i,\mathrm{IV},z=0}$$

- At Sections II and III where feed enters

$$c_{i,\text{III},z=0} = (Q_{\text{II}}/Q_{\text{III}})c_{i,\text{II},z=L_{j}} + (Q_{\text{F}}/Q_{\text{III}})c_{i,F} \qquad q_{i,\text{II},z=L_{j}} = q_{i,\text{III},z=0}$$

- At Sections IV and I where make-up desorbent enters

$$c_{i,I,z=0} = (Q_{IV}/Q_{I})c_{i,IV,z=L_{j}} + (Q_{D}/Q_{I})c_{i,D} \qquad q_{i,IV,z=L_{j}} = q_{i,I,z=0}$$

Steady-State TMB Model (3)

• Volumetric fluid flow rates

$$Q_{\rm I} = Q_{\rm IV} + Q_D$$
$$Q_{\rm II} = Q_{\rm I} - Q_E$$
$$Q_{\rm III} = Q_{\rm II} + Q_F$$
$$Q_{\rm IV} = Q_{\rm III} - Q_R$$

 To obtain the same true velocity difference between fluid and solid particles, upward fluid velocity in the SMB must be the sum of the absolute true velocities in the upward-moving fluid and the downward-moving solid particles in the TMB

Dynamic SMB Model

- Equations take into account time of operation, t, use a fluid velocity relative to the stationary solid particles, and must be written for each bed subsection, k, between adjacent ports
- Mass-balance equation for the bulk fluid phase, f

$$\frac{\partial c_{i,k}}{\partial t} - D_{L_j} \frac{\partial^2 c_{i,k}}{\partial z^2} + u_{f_k} \frac{\partial c_{i,k}}{\partial z} + \frac{(1 - \varepsilon_b)}{\varepsilon_b} J_{i,k} = 0$$

• Mass-balance for sorbate on the solid phase

$$\frac{\partial \overline{q}_{i,k}}{\partial t} - J_{i,k} = 0$$

Interstitial fluid velocity $(u_f)_{SMB} = (u_f)_{TMB} + |(u_s)|_{TMB}$

$$u_s = L_k / t^*$$

 L_k : bed height between adjacent ports
 t^* : port-switching time

• Boundary conditions for TMB models apply to SMB models. In addition, initial conditions are needed for $c_{i,j}$ and $\overline{q}_{i,j}$