VIII. Structure of Porous Gel

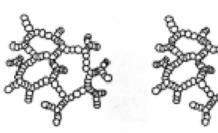
- Classification

A. Acid-catalyzed gel (from polymeric sol)

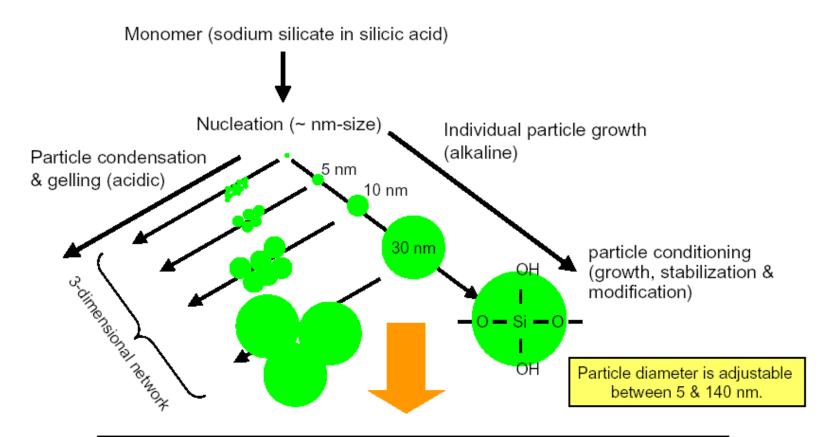
C. Base-catalyzed gel (from particulate sol)

Before drying

After drying (xerogel)


D. Aerogel

B. Two-step acid-base catalyzed gel


Before drying

After drying (xerogel)

Before drying

After drying (aerogel)

Colloidal Silica Synthesis

Particles build a dispersion which is stabilized by surface repulsive charges

A. Acid-catalyzed gel (from polymeric sol)

Before drying

After drying (xerogel)

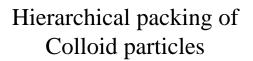
Two-step acid catalyzed silica gel
Weakly branched system

Desiccated xerogel

Extremely fine "texture" (TEM image)

- $\sqrt{}$ Condensation rate is low, overlapped (interwoven) at the gel point
- $\sqrt{}$ Structure can rather freely shrink in response to solvent removal
- √ The enoermous capillary pressure (up to 200 Mpa) attained at the final stage of drying causes a further compaction of the structure

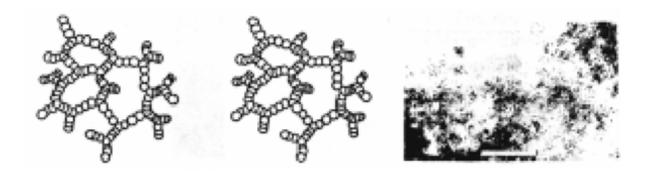
B. Two-step acid-base catalyzed gel


Before drying
Two-step acid-base
catalyzed gel

After drying (xerogel)
Desiccated xerogel

- √ More highly branched structures are prevented from interpenetrating
 due to strong intercluster, steric screening effects
- $\sqrt{}$ With solvent evaporation, individual clusters undergo shrinkage and rearrangement to achieve higher coordination of the impinging clusters
- $\sqrt{}$ Shrinkage stops at an early stage of drying due to the stiffness of the impinging clusters \rightarrow larger pores
- $\sqrt{}$ Two types of pores: microporosity within clusters, mesoporosity between clusters

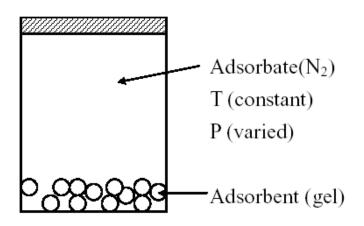
C. Base-catalyzed gel (from particulate sol)

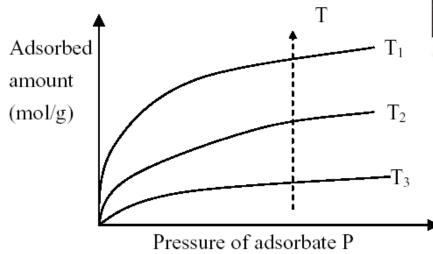


Random packing of colloid particles (coordination # = 3)

- $\sqrt{}$ Particulate xerogels are composed of uniform particles
- $\sqrt{}$ Drying can serve only to rearrange the particle assemblage to achieve higher coordination #
- $\sqrt{}$ Capillary pressure is much lower for particulate systems than the previous A and B
- $\sqrt{}$ The pore volume of the xerogels depends only on the particle-packing geometry

D. Aerogel




Before drying After drying (aerogel)

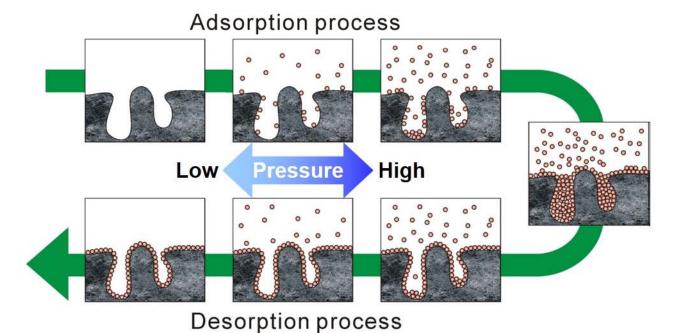
- $\sqrt{\text{Removal of solvent abve its critical point (no capillary pressure, no liquid-vapor interface)}$
- $\sqrt{}$ Greatly reduced driving force for shrinkage in aerogel process
- √ Compared to xerogels, aerogels are expanded structures that are often more closely related
 to the structure of the gel that existed at the gel point

- Pore Structure Characterization by Adsorption

Adsorption Isotherm

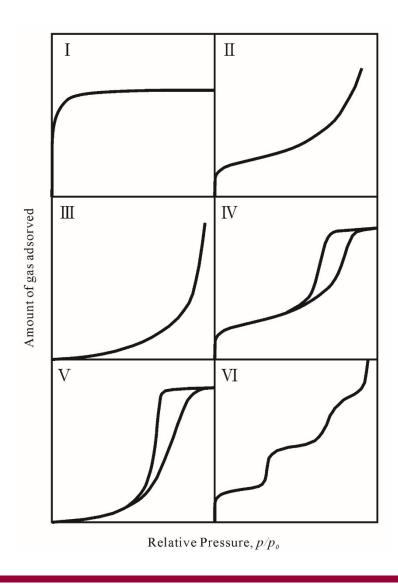
Experimental Methods

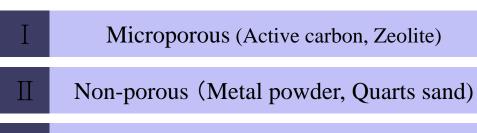
- Gravimetrical
- Volumetric
- G.C.

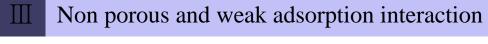

Physisorption

- Weak adsorptionReversible
- •Surface area/pore analysis

Chemisorption

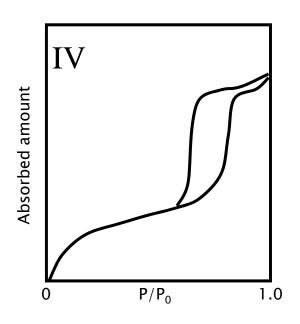

- •Strong adsorption
 •Irreversible
- Surface chemical property




– Physical adsorption vs. Chemisorption

Criterion	Physical adsorption	Chemisorption	
Force	Van der Waals force	Chemical bonding	
Coverage	Multilayer	Monolayer	
Adsorbent	All solids	Some solid	
Adsorbate	All gases below critical temp.	Chemically reactive vapor	
Reversibility	Completely reversible	May be reversible or irreversible	
Rate	Rapid	May be fast or slow	
Temp. dependence	Decreases with increasing temp.	May be complex	
Activation energy	Zero	Usually small	
Heat effect*	Always exothermic; similar to heat of condensation	Usually exothermic; similar to heat of reaction	
Heat of adsorption	2-10 kcal/mol	15-100 kcal/mol	

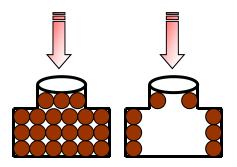
Classification of isotherms

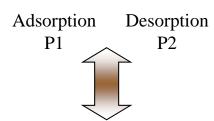


- V Porous and weak adsorption interaction
- VI Energetically uniform surface

Hysteresis loop in adsorption/desorption

IV,V types

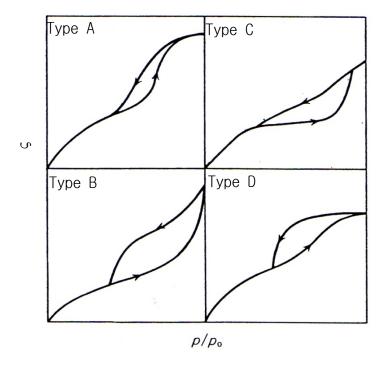

❖ link-bottle theory
Based on the different sizes of cavity
And throat.

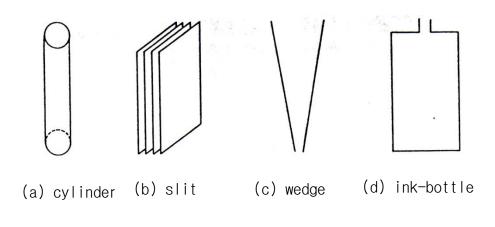

During adsorption, molecules are adsorbed on the broad cavities.

In contrast, desorption takes place through narrow throat.

Hysteresis loop is observed on the samples having mesopores due to Capillary condensation.

Pressure





Desorption requires lower relative pressure at the same adsorbed volume.

P1 > P2 (at the same adsorbed volume)

- Types of Hysteresis loop

Information from Isotherm

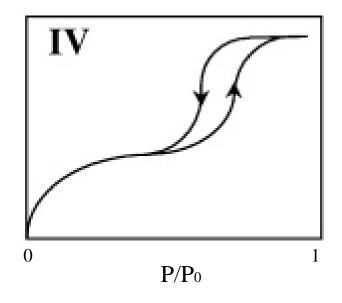
Information	Analysis	Note			
Specific surface area	BET method	Commonly used to calculate specific surface area.			
	Langmuir method	Once used for specific surface area calculation but not now.			
	t-plot	Especially effective for microporous material.			
	α _s -plot	Similar to t-plot			
Pore size distribution	ВЈН				
	CI	For mesopore analysis. Based on Kelvin equation and cylindrical pore mode			
	DH				
	MP	For micropore analysis. Deribed from t-plot.			
	HK,SF	(Basically) for micropore analysis.			
	NLDFT/GCMC	From micropore to mesopore.			
	Molecular probe	For micropore analysis. Plural isotherms are required.			
Pore volume	DA method	Pore volume and adsorption energy can be obtained.			
Chemical	Metal dispersion rate	To evaluate metal supported catalysts.			
property		Suface acidity, basicity, hydrophobicity and hydrophilicity.			

It is important to understand the features, applicable limit of each analysis method, and use appropriate analysis.

- Analysis of Porous materials by Adsorption

• Specific surface area

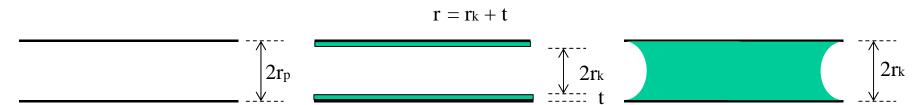
• Total pore volume


• Pore shape

• Pore size distribution

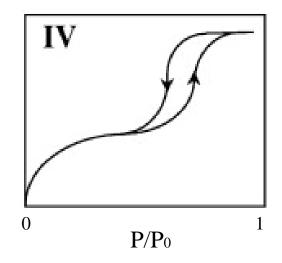
< Gas Characteristics used for Adsorption >

Gas	Typical adsorption temp. (K)	Saturated Vapor Pressure at adsorption temp. (Pa)		Adsorbed area (nm²/molecule)	
Nitrogen	77	1.013×10^5	at 77.4 K (liquid)	0.162	
Argon	77 87	2.78×10^4 1.013×10^5	at 77.4 K (solid) at 87.34 K (liquid)	0.15	
Krypton	77	239	at 77.4 K (solid)	0.20	
	77	338	at 77.4 K (solid)	0.20	
	90	2.74×10^3	at 90.2 K (solid)	0.20	
Xenon	90	8.25	at 90.2 K (solid)	0.23	
Methane	90	1.08×10^{4}	at 90.2 K (solid)	0.16	
N-butane	273	1.013×10^{5}	at 272.7 K (liquid)	0.44	
CO_2	195	1.013×10^{5}	at 194.7 K (solid)	0.20	


Type IV isotherm, hysteresis, typical for most gels derived from sol-gel process

Surface area

Measured from the adsorption isotherm in relative pressure <0.3 using the BET multilayer adsorption isotherm equation


Adsorption in cylindrical pores

Pore Volume, V_p

Calculated from saturated amount of adsorbate adsorbed

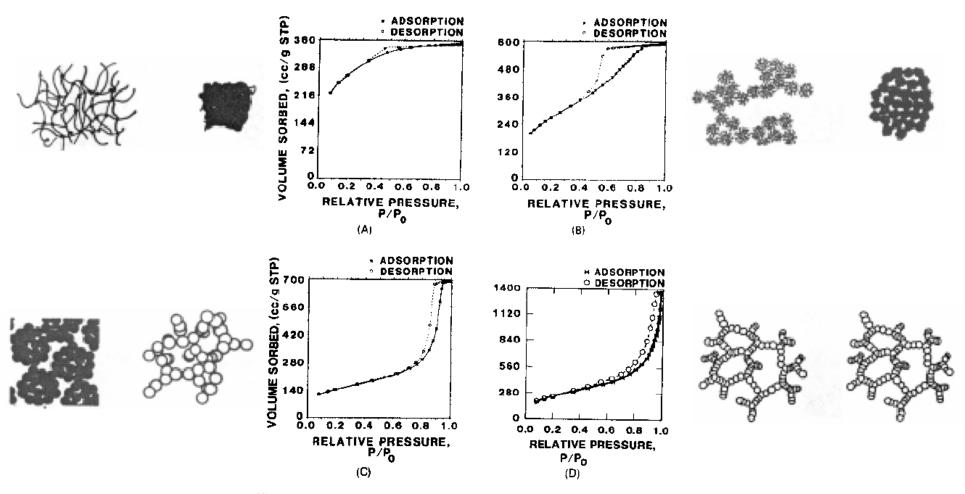
Pore Size Distribution, P(r)

Calculated from ad- or desorption isotherm

P/Po gives Vd

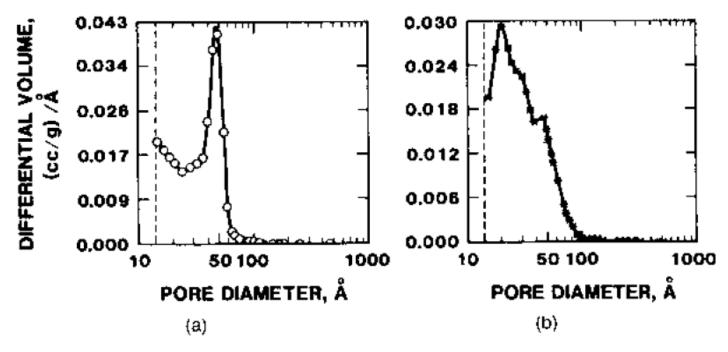
By Kelvin equation

$$Pv = Po \exp(V_m \gamma_L v k / RT)$$


$$r_k = f(P_v/P_0)$$

$$V_p - V_d(r) = \int_r^{\infty} P(r)dr$$
 \Longrightarrow $P(r) = -dV_d(r)/dr$

 V_p : total pore volume


 $V_d(r)$: volume of all pores having radii less than r

- Adsorption Isotherms of Nitrogen on Four Dried Silica Gels

Nitrogen adsorption-desorption isotherms at 77 K for the desiccated silica gels examined by TEM in Fig. 3. (A) Two-step acid-catalyzed xerogel. (B) Two-step acid-base-catalyzed xerogel. (C) Particulate xerogel. (D) Two-step acid-base-catalyzed aerogel. *: absorption; O: desorption [7].

- Pore size distribution of Gel B

Pore size distributions for the two-step acid-base-catalyzed xerogel determined from (a) the adsorption isotherm and (b) the desorption isotherm in Fig. 4b.

- Summary of Pore Structure of the Four Gels

Sample	Pore Volume (cm ³ /g N ₂ STP)	$V_{\rm p}^{\ a}$	Surface Area (m²/g)	Pore Diameter (Å) (adsorption)	Pore Diameter (Å) (desorption)	Bulk Density ^b (g/cm ³)	
Two-step acid-catalyzed xerogel (A2 in Table 8)	345	0.54	740	10-50	18	1.54	
Two-step acid-base-catalyzed xerogel (B2 in Table 8)	588	0.67	910	10-100	46	0.99	
Particulate (one-step base-catalyzed xerogel)	686	0.70	515	10-200	125	~0.6	
Two-step acid-base-catalyzed aerogel	1368	0.82^{c}	858	10-500°	186°	0.30	

^a Volume fraction porosity based on the theoretical SiO₂ skeletal density of 2.2 g/cm³.

^bMeasured at ~25% RH.

^e Because most of the adsorption occurs near P/P₀ near 1, pore volumes and pore size distributions may be inaccurate for aerogels.

KyungHee Univ.