하이드로카본 소재 합성 공정 최신전략 Synthetic Strategies of Hydrocarbon Reaction Catalysts/Materials

Uk Sim, Ph. D.

Nanomaterials for Energy & Environment Laboratory www.uksim.org

Single Atomic Catalysts

² Chem. Eur. J. (2018)

Metal and Nitrogen doped graphene

M-*N*₄ active site over graphene structure

Angew. Chem. Int. Ed. 2015, 54, 10102 - 10120

Nitrogen doping over graphene

Metal and nitrogen doping over graphene

Nature Communications 2015, 6, Article number: 8668

J. Mater. Chem. A, 2016,4, 1144-1173

Ni NTB GO

4

Single-Atom Metal Active Sites on Graphene Oxide

Chemical transformation of **nickel tris(2-benzimidazolylmethyl) amine (Ni-NTB)** adsorbed over graphene oxide sheets by the thermal annealing process

TEM analysis

Ni(NTB) annealed *without GO sheets*

Agglomeration of Ni atoms

Ni(NTB) annealed with GO sheets

Prevented Ni atom agglomeration

Single-Atom Metal Active Sites on Graphene HAADE STEM Oxide

Uniform dispersion of Ni atoms over N-doped graphene oxide sheets

Chemical Structure by X-ray spectroscopy

Electrochemical activity of Ni-N-RGO

Linear sweep voltammetry

Faradaic efficiency

100

-80 🛞

-60

40

20

0

-1.2

-1.0

-0.4

⁼aradaic Efficiency

Proposed reaction mechanism of Ni-N-RGO

Metal NTB carbonized with graphene oxide

Understanding selectivity of catalyst from DFT calculations

Ionic liquid derived Ni doped N Carbon for electrochemical CO production from CO₂

without silica supports

Current / 1e-3A

with silica supports

Ni-C₃N₄ Coated MWCNT for CO₂ Reduction

Research 1

Achieving highly efficient CO2 to CO electroreduction exceeding 300 mA cm⁻² with single-atom nickel electrocatalysts

Synthesis of single atom nickel and nitrogen doped threedimensional porous carbon electrocatalysts (Ni-SA-NCs).

- Nitrogen coordinated single atom
 nickel sites were formed on the carbon
 surfaces as active sites for CO₂RR.
- A three-dimensional structure was adopted to increase the surface of the catalyst, thus enhancing the efficiency of the CO₂RR

- FE-SEM, TEM, EDX mapping, and HAADF STEM images of Ni-SA-NCs. •
- Feld-emission scanning electron microscope (FE-SEM) and transmission electron microscopy (TEM) analysis of Ni-SA-NCs demonstrated a threedimensional structure.
- Energy-dispersive X-ray spectroscopy (EDS) elemental mapping and high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) showed uniform dispersion of nickel atoms over the catalysts.

XPS, RAMAN, XANES, and EXAFS of Ni-SA-NCs.

- X-ray diffraction (XRD) analysis indicated absence of peaks related to nickel materials suggests efficient removal of nickel agglomerates on Ni-SA-NCs.
- Raman spectroscopy showed that the carbonization temperature increases resulting the value of I_D/I_G for Ni-SA-NC decreases, and thus the number of defects in the Ni-SA-NCs is decreased.
- X-ray photoelectron spectroscopy (XPS) demonstrated that nitrogen and nickel were successfully doped on the carbon surfaces with the ionic characteristic of nickel atoms and various nitrogen defects.
- The Ni K-edge X-ray absorption near edge structure (XANES) their absorption edges are very close to those of nickel porphyrin (Ni-TPP) with a nickel valence state of 2+.
- X-ray absorption fine structure (EXAFS) analysis Ni-SA-NCs exhibit only one major peak around 1.42Å which can be assigned to a Ni–N pair.

Scheme and DFT calculation of each coordination site

- Four different nickel coordination structures were considered, NiN₄, NiN₃V, NiN₂V₂, and NiN₃.
- The potential for COOH* formation is the limiting potential for CO₂RR. NiN₃, NiN₃V, and NiN₂V₂ show lower free energies of COOH* formation than NiN₄ suggesting that CO₂ can interact more easily with these low coordination number nickel sites to form the COOH* intermediate at a lower applied potential.
- But, the limiting potential for the competitive hydrogen evolution reaction also decreases with these less coordinated nickel sites which can result in dominant hydrogen production.
- From the DFT calculation, the fully nitrogen coordinated Ni–N₄ active sites on the graphitic lattices facilitate highly selective CO production.

- the CO₂ was purged into the electrolyte, the current density increased significantly, exceeding 50 mA cm⁻² at 1.0 V vs. RHE.
- Ni-SA-NC prepared at 1000 C shows a maximum faradaic efficiency for CO₂ reduction exceeding 99%.
- Tafel slope was calculated as 110 mV dec⁻¹. This value is close to 118 mV dec⁻¹, suggesting that one electron transfer is involved in the rate-determining step (RDS).

- The CO₂ reduction efficiency was further improved by introducing the membraned electrode assembly (MEA) cell.
- The direct supply of CO₂ to the surface of the catalysts significantly enhances the limited mass transfer of CO₂ in the aqueous electrolytes, and a high CO production rate of over 300 mA cm⁻² can be achieved.

J. Mater. Chem. A, 2019, 7, 10651–10661

Research 2

Ni and N co-doped Hollow Carbon Sphere for CO₂RR

Ni, N-Hollow Carbon Sphere for CO₂RR

Introduction

Characteristics of Single Atom Catalysts

SACs utilize inexpensive transition metals and maximize atomic utilization to decrease the cost of synthesis.

The d-bands of transition metals of SACs have valence electrons that are close to the Fermi level overcoming the intrinsic activation barriers.

Particularly, the binding strength between the metal atom and coordinated N atoms is strong enough to achieve high stability due to the 2p orbitals of nitrogen hybridizing with the d orbitals of the transition metal atom.

Tetramer model of melanin

Melanin can storage, release, exchange the metal ion.

Tetramer model of melanin have four-nitrogen atoms anchoring metal ions.

Sheng Meng et al., Biophys. J. (2008)

Ni, N-Hollow Carbon Sphere for CO₂RR

250 nm

50 nm

Ni, N-Hollow Carbon Sphere for CO₂RR

X-ray Diffraction (XRD)

- XRD of Ni, N-HCS didn't show the Ni peaks.
 - → indicating that Ni atoms are dispersed well

	C 1s (at. %)	N 1s (at. %)	Ni 2p (at. %)
Ni(3wt%), N-HSC	79.53	4.36	0.65
Ni(1wt%), N-HSC	83.83	4.6	0.71
HCS	88.86	8.44	N/V

X-ray photoelectron spectroscopy (XPS)

Research 3

Ag and N co-doped Carbon Quantum Dots for CO₂RR

SEM of Ag, N-CQDs

TEM of Ag, N-CQDs

SEM of Ag nanoparticles for reference

- All the obtained CQD were spherical morphology with an average diameter of 3.3 nm.
- Bright particle showed 2.1Å of d-space → indicating CQD
- Dark particle showed 2.4Å
 of d-space

 \rightarrow indicating Ag

Reference number : 96-151-2488

Ag3d

XPS of the Ag-CQD

3d_{5/2}

Ag

Intensity (a.u.)			Ag-O		
364 368 372 376 Binding Energy (eV)					
Previous de la companya de la compan				O1s	
		Bind	ling Energy (e	eV)	
	Na	ame	Peak BE	Atomic %	
	C	21s	284.94	65.57	
	N1s		398.52	24.49	
	Ag3d		368.02	1.44	
	C)1s	531.12	8.5	
-					

FT-IR and UV-Vis of the Ag-CQD

 XRD of N-CQD, Ag-NP, and Ag-CQD showing (111) index plane of Ag metal in Ag-CQD.

٠

- UV-vis absorption spectra of N-CQD, Ag-NP, and Ag-CQD (10mg/ml)
- The XPS data of Ag-CQD showed Ag, O, N, and C peak with virous bonding energy.
- The Ag 3d peak elucidated that Ag existed.
- The N 1s peak showed that N atoms are coordinated with Ag such as Ag-N and Ag=N bonding.
- The XPS demonstrated the amount of Ag (1.44 at. %).

5000

- TCD detector

CO2 reduction reaction (Three electrode system at 0.5M KHCO₃)

GC analysis for FE

100

CH4

- The redox peak is not observed in CV of CO2 reduction.
 →Indirectly indicating that Ag particle is absent.
- Onset potential (1mA/cm²)
 Bare CC (Ar) : -0.764 (V vs RHE)
 Bare CC (CO2) : -0.749
 Ag-CQD (Ar) : -0.859
 Ag-CQD (CO2) : -0.472

	4500 -		ি	
Š	4000 -		Š	80 - H2
	3500 -	со	ů.	
Ξ	3000 -		cie.	60 -
ge	2500 -		Ű.	
Ita	2000 -		ш 0	40 -
Ŝ	1500 -	Valve	daj	
	1000	H ₂ CO	Irac	20 -
	500 -	Λ	ц	
~	0 			
U	Ó	1 2 3 4 5		-1.20 -1.00 -0.80 -0.60 -0.40 -0.20
		Time (min)		Pothential vs. RHE (V)
	28000	Ag-CQD		20 Ag-CQD
	24000	• Ag-NP		• Ag-NP
	24000 7	N-COD		
	24000 -	▲ N-CQD ▼ CC		▲ N- CQD 15 - ▼ CC
	20000 -	▲ N- CQD ▼ CC	_	15- CC
(C)	20000 - 16000 -	▲ N-CQD ▼ CC	â	15- CC
-Z" (Ω)	20000 - 16000 -	N-CQD CC	-Z" (Ω)	15- V CC
-Z" (Ω)	20000 - 16000 - 12000 -	N-CQD CC	-Z" (Ω)	15- CC 10-
-Z" (Ω)	20000 - 16000 - 12000 - 8000 -	N-CQD CC	-Z" (Ω)	10- 5-
-Z" (Ω)	20000 - 16000 - 12000 - 8000 - 4000 -	N-CQD CC	-Z" (Ω)	10- 5-
-Z" (Ω)	20000 - 16000 - 12000 - 8000 - 4000 -	N-CQD CC	-Z" (Ω)	10- 5- 0
-Z" (Ω)	20000 - 16000 - 12000 - 8000 - 4000 - 0 -	N-CQD CC 1000 2000 3000 4000 5000 6000	(Δ) "Z-	15 10 10 10 11 12

Sample	Onset potential at 1 mA/cm ² (V vs. RHE) at Ar condition	Onset potential at 1 mA/cm ² (V vs. RHE) at CO ² condition	
Bare CC -0.764		-0.749	
Ag-CQD/CC	-0.589	-0.472	

- Using Ag-CQD at CO₂ condition enhance the activity of the CO₂RR than bare carbon cloth (CC).
- Activity of the Ag-CQD at CO₂ condition is superior than Ar condition showing the supplied CO₂ accelerate the reaction.
- The product CO and $\rm CH_4$ can be detected using gas chromatography and demonstrated.