질소 순환 시스템 효율/안정성 유지 이슈 Efficiency and Stability Issues in Nitrogen Cycle Reaction System

Uk Sim, Ph. D.

Nanomaterials for Energy & Environment Laboratory www.uksim.org

Detection of Ammonia Production

• **Ex-situ analysis**

 $^{1}J_{14\text{N-1H}}$ = 52.4 Hz

Salicylate Test and UV/Vis Spectroscopy

• NH_3/NH_4^+ test

- **-** API Ammonia Test Kit
- Polyethylene glycol (<90wt%) and sodium salicylate (<10wt%)
- Ammonia levels from 0 to 8 ppm

Reaction sequence

- 1. Conversion of ammonia to monochloroamine
- 2. Monochloroamine reacts with salicylate to form 5-aminosalicylate.
- 3. 5-aminosalicylate is oxidized in the presence of sodium nitroferricyanide to form a blue-green colored dye that absorbs light at 650 nm.

Nessler's reagent

- Nessler's reagent : Potassium tetraiodomercurate (II) $(K_2[Hgl_4])$
- NH⁴ ⁺ + 2[HgI⁴] 2− + 4OH[−] → **HgO·Hg(NH²)I ↓** + 7I[−] + 3H2O

4

FTIR result

NMR confirmation

* ¹⁴Nitrogen J coupling.

 $\rm ^{14}N$ is the most natural abundant nitrogen isotope, 99.6 %. It has a spin I=1. If coupled to a ${}^{1}H$, NH, the ${}^{1}H$ line should split into $(2I+1)=3$ lines with equal intensities.

Most of the time though, due to quadrupolar relaxation effects, no ¹⁴N splitting of the ¹H line is observed.

Now, when N is in a highly symmetric environment, like $NH₄$ + the ^{14}N splits the proton signal into a triplet as shown in the following spectrum,

The following information on N-H couplings was found in the literature,

¹H spectrum of natural abundance NH₄Cl (1.5 M) in 1M HCl/H₂O showing coupling to ¹⁴N as a (spin 1) triplet and coupling to ¹⁵N as a weak doublet. Note that the ¹⁴N coupling constant is smaller than that of ¹⁵ resonant frequency.

NMR confirmation

NMR analysis

- \blacksquare NMR analysis using ¹⁵N₂ and N₂ is being performed to verify the nitrogen reduction performance of the catalyst.
- The triple peaks occurred when nitrogen is purged, where its interval is 52 Hz corresponding to ammonia signal.
- **•** Double peaks are indicated when using ${}^{15}NH_4Cl$ to standard data, which interval is 73 Hz.
- **•** Analysis using ${}^{15}N_2$ gas is ongoing.

Assessment protocol

In-situ XAS

NATURE COMMUNICATIONS | (2019) 10:34

- Potentiostatic testing was carried out at 0 V vs. RHE and the XANES results of the Fe K-edge were collected at different times.
- Once the reaction proceeds, the peak shifted from 7133 eV to a lower energy of 7131 eV after 15 min, suggesting a decreased valence state of Fe.
- During the NRR process, N_2 molecules are fixed to bond with Fe sites by donating electrons to the unoccupied d orbitals of Fe.

In-situ FTIR

- In situ electrochemical FTIR experiments are also conducted to elucidate the reaction mechanism of the NRR over the NiFe-MoS₂ NCs at - 0.3 V vs. RHE in 0.1 M Na₂SO₄ solution.
- Two negative-going peaks located at 1200 and 1156 cm-1 are observed, which are attributed to the **N–H** stretching and -NH_2 rocking vibration mode of the symmetrically coordinated NH₃.

- The absorption at 1161 cm⁻¹ is assigned to the N-N stretching, the intensity of which increased with increasing reaction time.
- Simultaneously, three weak absorptions at 1270, 1474, and 3337 cm-1 were observed, which are attributed to -NH₂ wagging, H–N–H bending, and N–H stretching of H–N–H bending, respectively.

In-situ FTIR

J. Am. Chem. Soc. 2018, 140, 4, 1496–1501

- The FTIR spectra collected in the 1st scan from 0.4 V to -0.5 V.
- A broad positive band at \sim 2088 cm⁻¹ that appeared with the reduction current in figure attributes to the adsorbed H atoms.
- Three weak bands at 1450 cm $^{-1}$, 1298 cm $^{-1}$ and 1109 cm-1 attribute to the H-N-H bending, $-MH₂$ wagging and N-N stretching of adsorbed $\mathsf{N}_2\mathsf{H}_\mathsf{y}$ species, respectively.

- The potential dependence of the strongest band among the three (N-N stretching at 1109 cm⁻¹) and the corresponding 1st segment of the CV (black dashed line).
- The band started to appear at potentials below 0 V and increased with potential decreasing, accompanying with the increase of the reduction current in the 1st segment of the CV.
- The results of FTIR on Pt film can be due to the low faradic efficiency of NRR on Pt surfaces compared with HER resulting in a much lower signal from N_2H_y if there is any. (right data)

Ion chromatography (IC)

Nuclear magnetic resonance (NMR)

J. Mater. Chem. A, 2019, 7, 26371–26377 | 26373

- Condition : with water suppression Bruker Avance3 400 MHz
- \blacksquare ¹⁵NH₄Cl solutions were prepared with 0.1 M HCl

Liquid Chromatography-Mass Spectrometry (LC-MS)

Despite their similar masses, the initial UPLC step separates the DNS-OH and DNS-NH₃ products by eluting them from the column at substantially different times. The mass-selected chromatograms for **DNS-OH and DNS-NH³** displayed two distinct peaks (1.8 and 3.1 min, respectively).

Liquid Chromatography-Mass Spectrometry (LC-MS)

- Mass-selected chromatogram for a 0.6 μ M ¹⁵NH₂ sample derivatized by dansyl chloride, demonstrating a high S/N ratio of \sim 12 and a short elution time of \sim 3.1 min.
- The presence of ammonia and its heavy isotopologue can be distinguished and quantified by their MS peak areas at m/z= 251.0854 (^{14}N) and m/z=252.0825 (^{15}N).
- Dansyl chloride is widely used in derivatization of amino acids for fluorescence and mass spectrometry analysis.

ACS Energy Lett. 2020, 5, 1532−1536

Gas Chromatography (GC)

- Relevant equilibrium to be considered is between ammonia in the gas phase (NH_{3(g)}) and ammonia as dissolved gas $(\mathsf{NH}_{3(\mathsf{aq})})$
- Electrochemcial ammonia generation device and equilibrium between dissolved ammonia (NH_{3(aq)}) and gas-phase ammonia (NH $_{3(g)}$) provided pH is basic.
- Gas-phase ammonia concentration is addressed directly by GC, while dissolved ammonia concentration is calculated from gas-phase ammonia concentration.
- ACS Energy Lett. 2020, 5, 3773−3777 When pH is greater than 11, the equilibrium is fully shifted to the left side of the equation.

Gas Chromatography (GC)

- Permanent gases are eluted at 0.25 min, ammonia at 1.1 min, and water at 1.3 min.
- This peak increases in time, indicating ammonia is generated electrocatalytically in solution and it quickly equilibrates with its gaseous head space as the high pH ensures that NH₃ is present in solution rather than NH⁴⁺.
- The ammonia production rate in the gas phase reahed about 143 ppb/h.
- When the current is stopped while maintaining the nitrogen carrier gas flow active, NH₃ concentration slowly decrease.

ACS Energy Lett. 2020, 5, 3773−3777