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Nitrogen and Fluorine co-doping in Graphene Quantum Dot

Applied Surface Science, 2020, 511: 145424 \

\ / |
N &
/ rﬁ'i i i .Carbon
) :‘ .Oxygen
Fluorine .Nitrogen

treatment

‘Fluorine

modified

Hummer’s  Gaqps N-GQDs N,F-GQDs
method

AFM images of the GQDs dispersed on a SiO, substrate TEM image of GQDs
TEM grid was supported by monolayer graphene gro

1.5 ]
1.0 /\ Al
0.5
0 f\ /"\“ /\/\wr\ )
N \’\// \lﬁ v 4% [
‘ ‘ ‘ ] '1'.-’,:?
059 50 100 150 200 }x' .; "
Distance (nm) .‘,-‘ 1\1
_ 15 ‘:‘..‘ X
€10 B Yt s
£05 /\'v\/ 0
: O/\ A 567 8910111213
v/ . .
. Particle size (nm)
059 50 100 150 200
Distance (nm)

* An Most of N,F-GQDs dispersed on graphene sheet show a size
distribution from 2 to 10 nm with an average size of 8.7 nm.
TEM image indicates the N,F-GQDs are highly crystalline

* An average height is under 1.5 nm height, which indicates
the number of layers in N,F-GQDs were about ~3 layers
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X-ray photoelectron spectroscopy (XPS)
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ionic C-F bond (686.2 eV)
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* N-GQDs and N,F-GQDs show that the peak at 286.4 eV attributed to C-N bond appears whereas the intensity of
carboxyl bonding at 289.0 eV is relatively decreased - Nitrogen and fluorine substitute oxygen
* N 1s peak of N-GQDs and N,F-GQDs exhibits three peaks at 398.5 (pyridinic N), 399.8 (pyrrolicN), and 401.1 eV
(graphitic N), respectively, which nitrogen is successfully functionalized on N-GQD and N,F-GQDs



Nitrogen and Fluorine co-doping in Graphene Quantum Dot

Applied Surface Science, 2020, 507: 145157.

3-electrode capacitance measurement as positive electrode

Capacitance of N,F-GQDs ; 244.46 F/g @ 3 mA/cm?
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carbon-based materials have
the ability to charge and
discharge quickly and long
cycle life due to the physical
adsorption and desorption of
electrolyte ions without the
chemical reactions

high electronegativity
difference between fluorine
and nitrogen-doped carbon
generates positively charged
carbons which accelerating
the capacitance toward
positive potential range



Asymmetric Supercapacitor using Fe;0, and Ni,P
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XRD of Fe;0, and Ni,P
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This affirms the transfer of an electron from Ni to P in the prepared Ni,P.
The single-phase formation and surface composition of Fe;0, and Ni,P were confirmed by XPS analysis.

Intensity (counts)

The XRD pattern with
strong peaks reveals the
single phase formation of
highly crystalline Fe;O, and
Ni,P nanoparticles with the
cubic and hexagonal crystal
structure.
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SEM, TEM, and EDS mapping of Ni,P

The FESEM images reveals the
uniformly distributed spherical
nanoparticles of Fe;0,. The
interconnected spherical
particles influence more vacant
space that can facilitate the
improved absorption rate of
electrolytic ions during
electrochemical activity.

The HRTEM images clearly
visualizes the noticeable crystal
lattice with an interplanar
spacing value of 0.25 and 0.29
nm that is equivalent to the d-
spacings of (11 3)and (02 2)
crystal plane of cubic Fe;0,.



Asymmetric Supercapacitor using Fe;0, and Ni,P
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SEM, TEM, and EDS mapping of Fe;O,
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the FESEM images of Ni,P reveals
uniformly distributed clusters of
globular nanoparticles. The
particle size of the nanomaterial
was estimated to be around 20
nm. These Ni,P nanoparticles are
linked together, forming web-like
clusters that can suitably absorb
the enormous number of
electrolytic ions.

the HRTEM image of Ni,P
nanoparticles illustrating well-
defined fringes with appropriate
interplanar spacings of 0.22 and
0.20 nm, with respect to the d-
spacingsof (11 1),and (02 1)
crystal planes of hexagonal Ni,P.
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3-electrode half cell test @ negative potential range (Fe;0,)
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The observed prominent redox
peaks from the CV curves of
the Fe;0, electrode suggest
the contribution of the
Faradaic mechanism. The
noticed peaks correspond to
the highly reversible oxidation
and reduction reactions of
Fe%/Fe?* to Fe?*/Fe3* and
Fe3*/Fe2* to FeZ*/Fe”,
respectively.

From the obtained CV curve,
the specific capacity of the
Fe;0, was calculated to be 176
C g !atascan rate of 1 mV/s.

The calculated specific
capacity of the Fe;0, electrode
is108Cgtat2Ag?.
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3-electrode half cell test @ positive potential range (Ni,P)
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Fluorine-doped Graphene Oxide for Hybrid Supercapacitor
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We firstly introduce a facile methode
to synthesize fluorine-doped graphene
oxide (FGO) from GO using a direct
plasma treatment method that is
mass-production compatible at once.
FGO is applied as cathode and anode
at hybrid supercapacitor.



Fluorine-doped Graphene Oxide for Hybrid Supercapacitor

GO
input
Plasma gas Plasma gas l
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T & NF, l
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3 step stage
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l FGO Vibration direction
output

* Graphene was functionalized with fluorine in a
dielectric barrier discharge (DBD) plasma reactor using
NF; source

* peak at 288.5 eV is assigned to C-F bonding

*  With increasing F/C ratio, the C-F bonds change their
character from ionic to semi-ionic to covalent one and
the prepared FGO shows below 4% F/C ration, which
inidcates semi-ionic bonding.

* The semi-ionic C-F bonding could enhance the
electrical properties of the electrode and facilitate
electron transport through the active material.
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Fluorine-doped Graphene Oxide for Hybrid Supercapacitor

3-electrode half cell test @ negative potential range
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* In negative potential range, FGO exhibits specific capacitance of 294 F/g @ 5mA/cm? and shows EDL capacitance

behavior.
*  Ourresults indicate that FGO is suitable as cathode and anode for hybrid supercapacitor device.



Fluorine-doped Graphene Oxide for Hybrid Supercapacitor

3-electrode half cell test @ positive potential range
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* In positive potential range, FGO exhibits specific capacitance of 368 F/g @ 5mA/cm? and shows pseudo
capacitance behavior.




Fluorine-doped Graphene Oxide for Hybrid Supercapacitor

Electron localization function K- and OH- adsorption energies
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electron DOS of FGO and GO FGO GO

*  FGO has electron state population just above Fermi
energy, which means that higher electron can be
excited with thermal energy

*  FGO layer is expected to have higher electron
density and conductivity than GO.
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Fluorine-doped Graphene Oxide for Hybrid Supercapacitor

2-electrode device test for hybrid supercapacitor
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FGO is employed as cathode and

anode for hybrid supercapacitor.

Maximum energy density of
28 Wh/kg @ 0.5 A/g

Maximum power density of
2200 W/kg @ 1.375 A/g




Camellia Japonica-derived Sulfur-enriched Activated Carbon

Biomass
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Low cost and renenue source . .
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~. ~ Camellia japonica flower was applied to catalysts for operating electrochemical reactions without
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it was carbonized at the temperature of 800 °C for 2 h in a horizontal tube furnace at the N2 atmosphere, in which the

heating rate was 5 °C min, then, the obtained sample was denoted as S-AC_, jiia-



Camellia Japonica-derived Sulfur-enriched Activated Carbon

Field emission scanning electron microscopy (FE-SEM) Transmission electron microscopy (TEM)

B, 77

* Raw materials of C. Japonica flower and the AC show the agglomerated
morphology.

* SCand SAC-N8 exhibit microsphere morphology supporting the movement
of ions by providing abundant sites, moreover, morphology of SAC-N8
illustrate more defective surface than SC.

* Morover, the SAC-N8 indicates elements of C, O, and S corresponding to
naturally incorporation of sulfur into the carbon structure.

b I 7 \\%ﬁ AC: commercial activated carbon
i”é’a"; Q%} SC: before activation and carbonization of the SAC
é SAC-N8: sulfur-doped activated carbon carbonized at N, atmosphere, 800°C.



Camellia Japonica-derived Sulfur-enriched Activated Carbon

X-ray diffraction (XRD) Raman spectra
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Camellia Japonica-derived Sulfur-enriched Activated Carbon

X-ray photoelectron spectroscopy (XPS)
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Camellia Japonica-derived Sulfur-enriched Activated Carbon

D

Supercapacitor performance of cyclic voltage (CV) at negative potential (0 to -1.0 V)
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Supercapacitor performance of galvanostatic charge/discharge (GCD)
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the SAC-N8 shows a higher specific
capacitance of than the AC
(60.38 F g'1) and bare Ni foam (0.59 F g
1) from the CV curves at a scan rate of
10 mV s,
the SAC-N8 shows

behavior
dominantly with several humps in the
CV curves that indicate the redox
reactions between the element of
oxygen group and sulfur and electrolyte.

The SAC-N8 exhibits a higher specific
capacitance of than that of
AC (65.75 F g'1) from the GCD curve at
a current density of 2 A g1,
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Camellia Japonica-derived Sulfur-enriched Activated Carbon

Supercapacitor performance of cyclic voltage (CV) at positive potential (0 to 0.65 V)
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Supercapacitor performance of galvanostatic charge/discharge (GCD)
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Specific capacity of the SAC-N8 exhibits
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the AC (236.55 C g!) and bare Ni foam

(61.19 Cg?) from CV cu
rate 10 mV s1.
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Camellia Japonica-derived Sulfur-enriched Activated Carbon

Supercapacitor device performance
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* The device stretches to a vast cell voltage of 1.6 V/, which relatively
higher than the reported biomass-derived devices.
* The calculated specific capacity from the CV curve shows the highest
value 117.52 Cg.
* the highest energy density is improved to 34.54 Wh kg at a power
density of 1600 W kg™.

Perform to real application (LED device)

} 35V

40V 2.2V

* The three-connectied device is
performed for real application in the
white (3.5 V), yellow (2.1 V), blue (4.0
V) and green (2.2 V) light-emitting
diode (LED) devices.



Stannite-type Cu,FeSnS, for supercapacitor

Morphology analysis — SEM data

ISR R

* All three samples show flake-like structures.

* The EG_CFTS shows porous rough surfaces. The
rough surface can improve wettability of materials
for better electron and electrolyte ion transmission.

* DI_CFTS has smooth surfaces due to the high
surface capillary forces of the water solvent.

*  EtOH_CFTS has smooth surface but does not have
homogeneous surfaces. They promote the
formation of interparticle spacing, and increase
specific surface area.

XRD data
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*  The observed diffraction pattern is matched well with the
diffraction pattern of tetragonal Cu,FeSnS, phase.
* Inthe XRD of DI_water, we have some extra peaks
between (111) and (020), that may due to phase change or
presence of impurities.



Stannite-type Cu,FeSnS, for supercapacitor

Morphology analysis — XPS data
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* The XPS spectra of CFTSs show the presence of Cu, Fe, Sn and S elements.
* EG_CFTS has a satellite peak and there are more active sites, which improves performance.



Stannite-type Cu,FeSnS, for supercapacitor

Electrochemical data
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Specific capacity of the EG_CFTS
exhibits the largest value (106.11 C
g1) than the DI_CFTS (23.33Cg?)
and EtOH_CFTS (56.96 C g'1) from
CV curves at a scan rate of 10 mV
st

The specific capacity of EG_CFTS is
calculated 107.09 C g1, while that
of DI_CFTS (31.51 Cg')and
EtOH_CFTS (64.55 C g'!) from GCD
curve at a current density of 1 A g1,
The surface of EG_CFTS is the
roughest and the most active sites,
so it seems to have good
performance.

The capacity retention of EG_CFTS
(47 %) is better compared to
DI_CFTS (33 %) and EtOH_CFTS
(33%).

The solution resistance of EG is the
lowest, so the supercapacitor
performance of EG_CFTS is the
best.



Co-MnO@C for Zinc-Air Battery

Preparation of Co-MnO@C

180 °C

Reduction of cobalt oxide

t=0

Co,0, CoO Co
Chemical Engineering Journal, 2017, 319: 279-287.

* The pristine sample was not matched w
ith the MnO and Co JCPDS pattern.

 After carbonizing at 350 to 450°C, the
metal oxide was reduced. This can be o
bserved in the DTA analysis.

Tube
furnace

1000 °Cin N, atm

MnO is a semiconducting oxide which can be shif
ted into a high valence state at a low potential in
an alkaline environment where it becomes a goo
d electron donor. This makes it an attractive cand
idate for the ORR.

It is generally acknowledged that the variable val
ence metal ion centers of manganese oxides (Mn
Ox) ensures good electrocatalytic activity.

Thermogravinetry/Differential thermal analysis (DTA)
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XRD pattern

Co-MnO@C for Zinc-Air Battery

Intensity (a.u)
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Co-MnO@C for Zinc-Air Battery

Temperature dependent FESEM

Recrystallization is defined as the process in which grains
of a crystal structure come in a new structure or new cryst
al shape.

The rate of the microscopic mechanisms controlling the n
ucleation and growth of recrystallized grains depend on th
e annealing temperature.

Arrhenius equation gives the dependence of the rate cons
tant of a chemical reaction on the absolute temperature,
a pre-exponential factor and other constants of the reacti
on.

As the temperature increases from 500 to 1000°C the
crystals fuse together and form Corona- like morphology.

Co-MnO@C prepared at 1000°C has prominent bubbles o
n the sphere.

As the temperature increases from 500 to 1000°C the crys
tals fuse together and form Corona-like morphology.

The oxygen bonded with the Cobalt evolves out as oxygen
gas at high temperature gives Metallic Co islands.

Results from bulk (p-XRD) and surface (XPS) analysis sugge
st that a restructuring of the CoO phase occurs during rea
ction, pushing lattice oxygen molecules from the particle
bulk to the particle surface, thereby maintaining the surfa
ce at a higher average oxidation state than the bulk.



Co-MnO@C for Zinc-Air Battery

HAADF TEM

* The presence of metallic Cobalt is consistent with the TEM images.
e SAED pattern- Co-MnO@C (1000°C) exhibits defined crystal lattice fringes with an interplanar spaci

ng of 0.2 nm and 0.25 nm, corresponding to the (111) planes of metallic Co and (111) planes of Mn
0.

* Diffraction pattern shows the crystalline nature of material.
 EDX mapping results indicated that the metallic Co is decorated on MnO.



Co-MnO@C for Zinc-Air Battery

ZAB test
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* OCV, power density and voltage gap in C-D cycles can be improved by decreasing the thickness of the PGE.
* Efficiency of ZAB was tested with LED for 15 minutes.
* This type of ZAB can be used as the foldable energy storage device.



