에너지 저장 소재 설계 Design of Energy Storage Materials

Uk Sim, Ph. D.

Nanomaterials for Energy & Environment Laboratory www.uksim.org

Nitrogen and Fluorine co-doping in Graphene Quantum Dot

AFM images of the GQDs dispersed on a SiO² substrate TEM image of GQDs

TEM grid was supported by monolayer graphene grown by CVD

- An average height is under 1.5 nm height, which indicates the number of layers in N,F-GQDs were about ~3 layers
- An Most of N,F-GQDs dispersed on graphene sheet show a size distribution from 2 to 10 nm with an average size of 8.7 nm.
- TEM image indicates the N,F-GQDs are highly crystalline

Nitrogen and Fluorine co-doping in Graphene Quantum Dot

Applied Surface Science, 2020, 507: 145157.

X-ray photoelectron spectroscopy (XPS)

- N-GQDs and N,F-GQDs show that the peak at 286.4 eV attributed to C-N bond appears whereas the intensity of carboxyl bonding at 289.0 eV is relatively decreased \rightarrow Nitrogen and fluorine substitute oxygen
- N 1s peak of N-GQDs and N,F-GQDs exhibits three peaks at 398.5 (pyridinic N), 399.8 (pyrrolicN), and 401.1 eV (graphitic N), respectively, which nitrogen is successfully functionalized on N-GQD and N,F-GQDs

Nitrogen and Fluorine co-doping in Graphene Quantum Dot

Applied Surface Science, 2020, 507: 145157.

3-electrode capacitance measurement as positive electrode

Capacitance of N,F-GQDs ; 244.46 F/g @ 3 mA/cm²

- carbon-based materials have the ability to charge and discharge quickly and long cycle life due to the physical adsorption and desorption of electrolyte ions without the chemical reactions
- high electronegativity difference between fluorine and nitrogen-doped carbon generates positively charged carbons which accelerating the capacitance toward positive potential range

Applied Surface Science, 2020, 507: 145157.

XRD of Fe3O⁴ and Ni2P

- This affirms the transfer of an electron from Ni to P in the prepared $Ni₂P$.
- The single-phase formation and surface composition of $Fe₃O₄$ and Ni₂P were confirmed by XPS analysis.

• The XRD pattern with strong peaks reveals the single phase formation of highly crystalline $Fe₃O₄$ and Ni₂P nanoparticles with the cubic and hexagonal crystal

 $P-O$

132

130

128

126

P_{2p}

 $P 2p_{1/2}$

Applied Surface Science, 2020, 507: 145157.

SEM, TEM, and EDS mapping of Ni2P

- The FESEM images reveals the uniformly distributed spherical nanoparticles of $Fe₃O₄$. The interconnected spherical particles influence more vacant space that can facilitate the improved absorption rate of electrolytic ions during electrochemical activity.
- The HRTEM images clearly visualizes the noticeable crystal lattice with an interplanar spacing value of 0.25 and 0.29 nm that is equivalent to the dspacings of (1 1 3) and (0 2 2) crystal plane of cubic Fe₃O₄.

Applied Surface Science, 2020, 507: 145157.

SEM, TEM, and EDS mapping of Fe3O⁴

- the FESEM images of $Ni₂P$ reveals uniformly distributed clusters of globular nanoparticles. The particle size of the nanomaterial was estimated to be around 20 nm. These Ni₂P nanoparticles are linked together, forming web-like clusters that can suitably absorb the enormous number of electrolytic ions.
- the HRTEM image of $Ni₂P$ nanoparticles illustrating welldefined fringes with appropriate interplanar spacings of 0.22 and 0.20 nm, with respect to the dspacings of (1 1 1), and (0 2 1) crystal planes of hexagonal $Ni₂P$.

Applied Surface Science, 2020, 507: 145157.

3-electrode half cell test @ negative potential range (Fe3O⁴)

- The observed prominent redox peaks from the CV curves of the $Fe₃O₄$ electrode suggest the contribution of the Faradaic mechanism. The noticed peaks correspond to the highly reversible oxidation and reduction reactions of Fe⁰/Fe²⁺ to Fe²⁺/Fe³⁺ and Fe³⁺/Fe²⁺ to Fe²⁺/Fe⁰, respectively.
	- From the obtained CV curve, the specific capacity of the $Fe₃O₄$ was calculated to be 176 C g^{-1} at a scan rate of 1 mV/s.
- The calculated specific capacity of the $Fe₃O₄$ electrode is 108 C $\rm g^{-1}$ at 2 A $\rm g^{-1}$.

Applied Surface Science, 2020, 507: 145157.

3-electrode half cell test @ positive potential range (Ni2P)

- The redox peaks noted at 0.45/0.4 V (vs. Hg/HgO) affirms the legitimate Faradaic reaction (battery-like) mechanism contributed by the $Ni₂P$ electrode to that initiates charge storage.
- From the obtained CV curve of the prepared $Ni₂P$, the specific capacity was calculated to be 449 C g−1 at a scan rate of 1 mV/s.
- The calculated specific capacity of Ni₂P electrode is 354 C g⁻¹ at a current density of 1 A g^{-1} .

Applied Surface Science, 2020, 507: 145157.

EIS data

• the prepared $Fe₃O₄$ and Ni₂P electrodes possess improved conductivity with low charge transfer resistance that promotes superior charge storage property.

2-electrode device test for hybrid supercapacitor

- Graphene was functionalized with fluorine in a dielectric barrier discharge (DBD) plasma reactor using $NF₃$ source
- peak at 288.5 eV is assigned to C-F bonding
- With increasing F/C ratio, the C-F bonds change their character from ionic to semi-ionic to covalent one and the prepared FGO shows below 4% F/C ration, which inidcates semi-ionic bonding.
- The semi-ionic C-F bonding could enhance the electrical properties of the electrode and facilitate electron transport through the active material.

3-electrode half cell test @ negative potential range

- In negative potential range, FGO exhibits specific capacitance of 294 F/g ω 5mA/cm² and shows EDL capacitance behavior.
- Our results indicate that FGO is suitable as cathode and anode for hybrid supercapacitor device.

3-electrode half cell test @ positive potential range

• In positive potential range, FGO exhibits specific capacitance of 368 F/g @ 5mA/cm² and shows pseudo capacitance behavior.

2-electrode device test for hybrid supercapacitor

it was carbonized at the temperature of 800 °C for 2 h in a horizontal tube furnace at the N2 atmosphere, in which the heating rate was 5 °C min⁻¹, then, the obtained sample was denoted as S-AC_{camellia}.

Field emission scanning electron microscopy (FE-SEM)

- Raw materials of C. Japonica flower and the AC show the agglomerated morphology.
- SC and SAC-N8 exhibit microsphere morphology supporting the movement of ions by providing abundant sites, moreover, morphology of SAC-N8 illustrate more defective surface than SC.

Transmission electron microscopy (TEM)

• Morover, the SAC-N8 indicates elements of C, O, and S corresponding to naturally incorporation of sulfur into the carbon structure.

AC: commercial activated carbon

SC: before activation and carbonization of the SAC

SAC-N8: sulfur-doped activated carbon carbonized at N₂ atmosphere, 800°C.

 $2A g^{-1}$

3A g⁻¹
4A g⁻¹
5A g⁻¹

Supercapacitor performance of cyclic voltage (CV) at negative potential (0 to -1.0 V)

Supercapacitor performance of galvanostatic charge/discharge (GCD)

 -1.0

 -0.8

 $\frac{9}{2}$ -0.6
 $\sum_{-0.4}$

 -0.2

 $0₀$

0

20

40

60

 80

Time (sec)

100 120 140

Potential

Hg/HgO

- Bare Ni foam

SAC-N8

— АС SC

60 80 100 120 140 160

Time (sec)

Potential (V) vs. Hg/HgO
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$

0 20 40

- the SAC-N8 shows a higher specific capacitance of 141.83 F g^{-1} than the AC (60.38 F g^{-1}) and bare Ni foam (0.59 F g^{-} 1) from the CV curves at a scan rate of 10 mV s^{-1} .
- the SAC-N8 shows electrochemical double-layer capacitor (EDLC) behavior dominantly with several humps in the CV curves that indicate the redox reactions between the element of oxygen group and sulfur and electrolyte.
	- The SAC-N8 exhibits a higher specific capacitance of 125.42 F g^{-1} than that of AC (65.75 F g^{-1}) from the GCD curve at a current density of 2 A g^{-1} .

Supercapacitor performance of cyclic voltage (CV) at positive potential (0 to 0.65 V)

Supercapacitor performance of galvanostatic charge/discharge (GCD)

• Specific capacity of the SAC-N8 exhibits the largest value (453.85 $C g^{-1}$) than the AC (236.55 C g^{-1}) and bare Ni foam $(61.19 C g⁻¹)$ from CV curve at a scan rate 10 mV s^{-1} .

- The specific capacity of the SAC-N8 is calculated at $316.31 C g^{-1}$, while that of AC is calculated $185.91 C g^{-1}$ from the GCD curve at a current density at 2 A g-1 .
- GCD curves of all samples illustrate slightly distorted triangular shape in the positive potential range due to the Faradaic redox reaction.

Supercapacitor device performance

Perform to real application (LED device)

 3.5 V 2.1 V

- The three-connectied device is performed for real application in the white (3.5 V), yellow (2.1 V), blue (4.0 V) and green (2.2 V) light-emitting diode (LED) devices.
- The device stretches to a vast cell voltage of 1.6 V, which relatively higher than the reported biomass-derived devices.
- The calculated specific capacity from the CV curve shows the highest value 117.52 C g^{-1} .
- the highest energy density is improved to 34.54 Wh $kg⁻¹$ at a power density of 1600 W kg^{-1} .

Stannite-type Cu² FeSnS⁴ for supercapacitor

Morphology analysis – SEM data

- All three samples show flake-like structures.
	- The EG CFTS shows porous rough surfaces. The rough surface can improve wettability of materials for better electron and electrolyte ion transmission.
- DI CFTS has smooth surfaces due to the high surface capillary forces of the water solvent.
- EtOH CFTS has smooth surface but does not have homogeneous surfaces. They promote the formation of interparticle spacing, and increase specific surface area.

XRD data

- **•** The observed diffraction pattern is matched well with the \bullet diffraction pattern of tetragonal Cu₂FeSnS₄ phase.
- In the XRD of DI water, we have some extra peaks between (111) and (020), that may due to phase change or presence of impurities.

Stannite-type Cu² FeSnS⁴ for supercapacitor

Morphology analysis – XPS data

- The XPS spectra of CFTSs show the presence of Cu, Fe, Sn and S elements.
- EG_CFTS has a satellite peak and there are more active sites, which improves performance.

Stannite-type Cu² FeSnS⁴ for supercapacitor

Electrochemical data

- Specific capacity of the EG CFTS exhibits the largest value (106.11 C g^{-1}) than the DI_CFTS (23.33 C g^{-1}) and EtOH_CFTS $(56.96 C g⁻¹)$ from CV curves at a scan rate of 10 mV S^{-1} .
- The specific capacity of EG CFTS is calculated 107.09 C g^{-1} , while that of DI_CFTS (31.51 C g^{-1}) and EtOH_CFTS (64.55 C g^{-1}) from GCD curve at a current density of 1 A g^{-1} . The surface of EG CFTS is the roughest and the most active sites, so it seems to have good
	- performance.
- The capacity retention of EG CFTS (47 %) is better compared to DI_CFTS (33 %) and EtOH_CFTS (33%).
- The solution resistance of EG is the lowest, so the supercapacitor performance of EG_CFTS is the best.

Preparation of Co-MnO@C

- MnO is a semiconducting oxide which can be shif ted into a high valence state at a low potential in an alkaline environment where it becomes a goo d electron donor. This makes it an attractive cand idate for the ORR.
- It is generally acknowledged that the variable val ence metal ion centers of manganese oxides (Mn Ox) ensures good electrocatalytic activity.

Reduction of cobalt oxide

- The pristine sample was not matched w ith the MnO and Co JCPDS pattern.
- After carbonizing at 350 to 450°C, the metal oxide was reduced. This can be o bserved in the DTA analysis.

XRD pattern

- Pristine sample was annealed at tempera tures from 500 to 1000 $^{\circ}$ C.
- As the temperature was increasing the cr ystallinity of the material was increased.
- Annealed sample matched with the MnO and Co JCPDS pattern.
- The planes of (002) and (111) for MnO a nd Co corresponds to the Cubic crystal st ructure. This crystal structure is highly el ectrocatalytic on comparing the others.

- Presence of Co, Mn, O and C was confirmed from the XPS analysis.
- Co metal at the surface was partially surface oxidized.

Temperature dependent FESEM

- Recrystallization is defined as the process in which grains of a crystal structure come in a new structure or new cryst al shape.
- The rate of the microscopic mechanisms controlling the n ucleation and growth of recrystallized grains depend on th e annealing temperature.
- Arrhenius equation gives the dependence of the rate cons tant of a chemical reaction on the absolute temperature, a pre-exponential factor and other constants of the reacti on.
- As the temperature increases from 500 to 1000^oC the crystals fuse together and form Corona- like morphology.

900 ^oC

1000 oC

- Co-MnO@C prepared at 1000°C has prominent bubbles o n the sphere.
- As the temperature increases from 500 to 1000°C the crys tals fuse together and form Corona-like morphology.
- The oxygen bonded with the Cobalt evolves out as oxygen gas at high temperature gives Metallic Co islands.
- Results from bulk (p-XRD) and surface (XPS) analysis sugge st that a restructuring of the CoO phase occurs during rea ction, pushing lattice oxygen molecules from the particle bulk to the particle surface, thereby maintaining the surfa ce at a higher average oxidation state than the bulk.

HAADF TEM

- The presence of metallic Cobalt is consistent with the TEM images.
- SAED pattern- Co-MnO@C (1000°C) exhibits defined crystal lattice fringes with an interplanar spaci ng of 0.2 nm and 0.25 nm, corresponding to the (111) planes of metallic Co and (111) planes of Mn Ω .
- Diffraction pattern shows the crystalline nature of material.
- EDX mapping results indicated that the metallic Co is decorated on MnO.

ZAB test

- OCV, power density and voltage gap in C-D cycles can be improved by decreasing the thickness of the PGE.
- Efficiency of ZAB was tested with LED for 15 minutes.
- This type of ZAB can be used as the foldable energy storage device.