광전기화학 시스템 광전극 소재 설계

Design of Photoelectrodes

Uk Sim

Department of Materials Science & Engineering Chonnam National University

Water Splitting Reaction at Semiconductor/Liquid Junction

$$H_{2}O + 2h^{+} \rightarrow \frac{1}{2}O_{2} + 2H^{+} \qquad E_{anodic} = 1.23 \text{ V- } 0.059(\text{pH}) \text{ V(NHE)}$$

$$2H^{+} + 2e^{-} \rightarrow H_{2} \qquad E_{cathodic} = 0 \text{ V- } 0.059(\text{pH}) \text{ V(NHE)}$$

$$H_{2}O \rightarrow H_{2} + \frac{1}{2}O_{2} \qquad \Delta G_{0} = 237 \text{ kJ/mol } (\Delta E_{0} = -1.23 \text{ V})$$

Band structures and Redox potentials

Photoelectrochemical Unassisted System

Unassisted System (Tandem Cell)

Photoelectrode / Solar Cell + Catalysts

- Generates electrical current to operate the cell
- Generates EHP for the catalyst to cause redox reaction

Tandem Cell are device with two or more materials with different bandgap; usually used in solar cells

Top cell with narrow bandgap, bottom cell with wider; Allowing to absorb more photons and reduce recombination rate

Energetics of Semiconductor/Liquid Junctions under Illumination

The photovoltage (Voc) generated at a semiconductor/liquid junction

$$V_{\rm oc} = (nk_{\rm B}T/q) \ln(J_{\rm ph}/\gamma J_{\rm s})$$

n: the diode quality factor

Jph (A m⁻²): the photocurrent density,

Js: the saturation current density, which is related to the sum of the recombination pathways

y: the ratio of the actual junction area to the geometric surface of the electrode (i.e., the roughness factor)

The electron concentration at the surface of an n-type semiconductor, n_s ,

$$n_{\rm s} = N_{\rm d} e^{q(E_{\rm fb} - E)/k_{\rm B}T}$$

 $E_{\rm fh}$: the flat-band potential,

 N_d : the concentration of donor atoms

The net flux of electrons from the conduction band to acceptors dissolved in solution

$$J(E) = -qk_{\rm et}[A]n_{\rm s}$$

J is the current density (A cm-2),

 $k_{\rm et}$ is the electron transfer rate constant (cm4 s-1),

[A] is the acceptor concentration (cm-3)

 $J_{\rm br}$: radiative or nonradiative recombination in the bulk of the semiconductor,

 J_{dr} : depletion-region recombination,

 J_{ss} : surface recombination due to defects,

J_t: tunneling current,

 J_{et} : electron-transfer current associated with majority carriers traversing the interfacial barrier

Suggested photoelectrochemical cell (PEC) characterization IPCE / Illuminated open 3-electrode circuit potential Photocurrent yes CVs (light & dark) and/or spectroscopy Photocurrent onset Promising IPCE? Mott-Schottky to Does it show ls 1.5 <E_a <2.5? determine promise? conductivity & V_{ER} no yes no yes (Start here) STH H₂/O₂ Gas UV-vis Material Design no 2-electrode zerodetection. High Spectroscopy and Synthesis bias photocurrent Faradaic Is $1.5 < E_g < 2.5$? efficiency? Does it need. a bias? Design experiments yes no yes no to understand and improve upon no material deficiencies **ABPE** Stability tests H₂/O₂ Gas yes yes -electrode applied towards 5000 hour detection. High bias photocurrent. goal. Faradaic Is photocurrent Is it stable? efficiency? mA/cm²? yes no no Congratulations!

Primary measurments of efficieny

- (i) Benchmark efficiency (suitable for mainstream reporting)
 - (a) solar-to-hydrogen conversion efficiency (STH)
- (ii) Diagnostic efficiencies (to understand material performance)
 - (a) applied bias photon-to-current efficiency (ABPE)
 - (b) external quantum efficiency (EQE) = incident photon-to-current efficiency (IPCE)
 - (c) internal quantum efficiency (IQE) = absorbed photon-to-current efficiency (APCE).

$$STH = \left[\frac{(\text{mmol H}_2/\text{s}) \times (237 \text{ kJ/mol})}{P_{\text{total}}(\text{mW/cm}^2) \times \text{Area (cm}^2)}\right]_{\text{AM 1.5 G}} \qquad STH = \left[\frac{\left|j_{SC}(\text{mA/cm}^2)\right| \times (1.23 \text{V}) \times \eta_F}{P_{\text{total}}(\text{mW/cm}^2)}\right]_{\text{AM 1.5 G}}$$

ABPE =
$$\frac{\left|j_{ph}(\text{mA/cm}^2)\right| \times (1.23 - |V_b|)(V)}{P_{\text{total}}(\text{mW/cm}^2)}$$
AM 1.5 G

$$\begin{split} IPCE &= EQE = \eta_{e^{-}/h^{+}} \eta_{transport} \eta_{interface} \\ IPCE(\lambda) &= EQE(\lambda) = \frac{electrons/cm^{2}/s}{photons/cm^{2}/s} \\ &= \frac{\left|j_{ph}(mA/cm^{2})\right| \times 1239.8(V \times nm)}{P_{mono}(mW/cm^{2}) \times \lambda(nm)} \end{split}$$

 $\eta_{\text{e-/h+}}$: Photon absorptance (the fraction of electron-hole pairs generated per incident photon flux) $\eta_{\text{transport}}$:Charge transport to the solid-liquid interface $\eta_{\text{interface}}$:The efficiency of interfacial charge transfer

$$APCE = IQE = \frac{IPCE}{\eta_{e^-/h^+}} = \eta_{transport} \eta_{interface}$$

$$APCE(\lambda) = IQE(\lambda)$$

$$= \frac{\left|j_{ph}(\text{mA/cm}^2)\right| \times 1239.8(\text{V} \times \text{nm})}{P_{mono}(\text{mW/cm}^2) \times \lambda(\text{nm}) \times (1 - 10^{-A})}$$

$$A = -\log\left(\frac{I}{I_0}\right) ,$$

$$\eta_{e^-/h^+} = \frac{I_0 - I}{I_0} = 1 - \frac{I}{I_0} = 1 - 10^{-A}$$

Overall Water Splitting Efficiency

M. G. Walter et al., Chem. Rev. 110, 6446 (2010)

 η_{STH} : true solar to hydrogen production efficiency V_{app} : the applied voltage measured between the photoanode and the photocathode

J_{mp}: the externally measured current density P_{in}: the power density of the illumination

Overall Water Splitting Efficiency

 η_{STH} : true solar to hydrogen production efficiency

V_{app}: the applied voltage measured between the photoanode and the

photocathode

J_{mp}: the externally measured current density

P_{in}: the power density of the illumination

Chem. Rev., 110, 2010, 5449

"BORSA": Consideration of photoelectrochemical system design

- •Strong field for efficient charge generation, separation with minimum recombination
- Wide band gap, low absorption coefficient, or scattering centers from surface textures
- •Conductive, easy ion migration and bubble release; facile charge transfer with minimum barrier at C/E interface
- •Chemically inert in interested environment and under interested bias, compact/defectfree, and strong bonding to substrate
- High catalytic activity, selectivity, large number of surface reaction sites

General design guidelines ("BORSA") for heterogeneous coatings to enable Si for solar-fuel conversion.

Development of solar-to-hydrogen conversion platform: Silicon photocathode

Silicon

- ✓ Earth abundant and low cost material
- ✓ Low bandgap (1.12 eV) absorbing a significant part of the solar spectrum

Silicon photocathode

- ✓ Higher conduction band than H⁺/H₂ redox potential when interfaced with water
- ✓ Theoretical maximum of single junction Si: limiting current density(~33 mA/cm²) and photovoltage(~0.5 V)
- ✓ Very low solar-to-hydrogen conversion efficiency due to kinetic barrier for proton transport and the formation of oxidation layer in aqueous solution

Condition of photocurrent measurement

- ✓ Light intensity of 100 mW/cm² and AM 1.5G solar spectrum using 300W Xe lamp
- ✓ 1 M HClO₄ (pH 0)
- √ 3 electrode system (working, counter, reference)

Planar Si and etched Si wire

Advantage of Wire Structure

- Enhanced effective area
- Reduced reflection
- Orthogonalization of light absorption and charge-carrier collection

Planar Structure

 L_D : the diffusion length α : the absorption coefficient of the semiconductor near the band gap energy. $1/\alpha$: optical thickness

Nanostructural dependence on Si photocathode

Silicon nanowire was fabricated by Metal-Catalyzed Electroless Method

The optimum nanostructure of a Si photocathode exhibits an enhanced photocurrent and a lower overpotential compared to the planar bulk Si.

The solar-to-hydrogen conversion efficiency of the optimized Si nanowire without depositing any catalyst has reached up to about **70% of the efficiency of planar Si decorated with Pt.**

Si Nanowire Photocathode

Diffusion length
$$L_D = \sqrt{D\tau} \geq 1/_{\alpha}$$

Onset potentia
$$V_{os} = \frac{kT}{q} \ln \frac{J_{ph}}{\gamma J_o}$$

Efficiency: 1.19% (43 times higher than bare Si)

Mechanism at the interface

UPS measurement

Increased density of states

- → Further Coulombic shift
- → The smallest work function
- → The highest band bend bending

Importance of the electronic band structures of catalytic surface on photoelectrode

¹⁶Hierarchical branching carbon nanowire catalyzed by copper-vapor on silicon

Hierarchical branching carbon nanowire catalyzed by copper-vapor on silicon

Strategy of research for design of photoanode

- Poor majority carrier conductivity (i)
 - → high-level **doping**
- Too low flat band potential
 - → external bias / band tuning
- Overpotential: surface trap or poor OER (ii)
 - → surface treatment / catalysis
- Saturartion current: Short diffusion length of minority carriers (hole) (iii)
 - → morphology control / nanostructure

K. Sivula et al., ChemSusChem 4, 432 (2011)

Hematite (α -Fe₂O₃) Photoanode

The most common form of iron oxide.

Fe: 4th abundant element in the earth's crust

O: 21 % of the air

Low cost nontoxicity

Iron is readily oxidized in the presence of water. "Rust"

Hematite is very stable in aqueous solution.

Chemical Stability

The ability to absorb light.

Hematite is used as pigments in paints and even cosmetics.

Visible-light absorption

Hematite is an attractive material for use in solar water oxidation.

(020)-Textured WO₃ via laser ablation method

Metal oxides (ex. TiO₂, Fe₂O₃, BiVO₄, WO₃) have been promising candidates for the photoanode

WO₃ via Texture and Nanostructure Control

- Morphology and thickness control through oxygen partial pressure (100~700 mTorr)
- Schematics (e) shows how the partial pressure effects the morphology.

➤ Optic properties were investigated through absorption, transmittance, reflectance measurement.

WO₃ via Texture and Nanostructure Control

Morphology Control of TiO₂ Nanorods Photoanode

