광전기화학 시스템 조촉매 소재 설계 Design of Co-catalysts in PEC System

Uk Sim Department of Materials Science & Engineering Chonnam National University

Water Splitting and Catalysts

CHONNAM NATIONAL Departmen**பல் IME கே விர் ந**ேcience and

Nanomaterials for Energy & Environment Laboratory

NEEL

Effect of Surface Catalyst

Catalyst

1. Improvement of photoelectrode kinetics

2. Change of energetics of the electron transfer process

Good Catalyst

- 1. Highly active (producing large quantities of H₂ or O₂ quickly)
- 2. Robust enough to maintain its efficiency over time scales

Michael G. Walter et al., Chem. Rev, 110, 6446, (2010)

Catalyst Materials for Hydrogen Evolution

Bio-inspired MoS Catalysts for hydrogen evolution

MoS₂ nanocrystal Phys. Rev. Lett., 2000, 84, 951 J. Catal., 2004, 221, 510

MoS₂ nanoparticles on Graphene

JACS Comm., 2011, 133, 7294

Mo₃S₄ co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

Two photon process system: Ideal chemical tandem solar cell

- 10 % of the energy supplied from the sun at peak intensity = ~8mA/cm² at both cathode and anode
- Si(1.12eV bandgap): Excellent for capturing photons in the red part of the solar spectrum

Pillar structure vs. planar structure Nat. Mater., 10, **2011**, 434

Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts

Steven Y. Reece et al., Sciencexpress, 29 september

Disadvantages of Previous Catalyst on PEC

J. Mater. Chem. A, 2013,1, 5414-5422 Energy Environ. Sci., 2013,6, 1633-1639 J. Phys. Chem. C, 2008, 112, 6194-6201

- In PEC, negative effects from catalysts should be considered:
 - 1) reflection by the overlaid catalyst, 2) an unfavorable band structure such as a Schottky barrier, 3) photocorrosion, and 4) recombination sites at the interface.
- To design catalysts for photoelectrochemical water splitting, the optical properties, stability and interfacial issues must be comprehensively considered.

Carbon-based catalysts

Nature Mater. 2011, 10, 780-786

Nature Nanotech. 2012, 7, 394-400

- Carbon-based catalysts: non-precious, environmentally benign, and corrosion resistant catalysts
- Graphene: excellent transmittancy and superior intrinsic carrier mobility
- It has been reported that reduced graphene oxide (rGO) containing catalytic active materials exhibited improved activity in HERs, oxygen evolution reactions (OERs), and oxygen reduction reactions (ORRs)

Preparation of Graphene, NGr/Silicon photocathode

Process for Nitrogen doped Graphene Quantum Dot(NGr)

Morphology transition of Graphene via plasma treatment

The effect of Graphene catalyst on Si photocathode

N-doped monolayer graphene catalyst enhanced the PEC performance of a Si-photocathode.

The onset potential for photocurrent from the Si was significantly shifted toward the anodic direction without a change in the saturation current density.

NGr has excellent catalytic activity for photoelectrochemical HER on the Si photocathode

NGr is a passivation layer that maintains a higher onset potential and current density even at neutral pH.

Onset potential (V_{os}) Enhancement

Uk Sim et al., Energy Environ. Sci. (2013)

Doping Generation by N₂ Plasma Treatment

N-GQSs: N-doped graphene quantum sheets

Increase of intrinsic active sites

J. Moon., J. An, <u>U. Sim</u> et al., Adv. Mater. (2014) Uk Sim et al., Energy Environ. Sci. (2015) KR Patent (Registration: 10-1598017)

Optimized Interface Engineering

The spacing of Fringe, $\mathbf{a}_{m} = (\mathbf{a}_{ggs} \times \mathbf{a}_{si}) / \sqrt{\mathbf{a}_{ggs}^{2} + \mathbf{a}_{si}^{2} - 2\mathbf{a}_{ggs} \mathbf{a}_{si} \cos(\alpha_{ggs} - \alpha_{si})}$

Efficiency record

Electrochemical Response of Graphene

• Tafel reaction: $\theta_{\rm H} \approx 1 : b = 30 \text{ mV/dec}$

Uk Sim et al., Energy & Environ. Sci. 6, 3658-3664 (2013)

Electrochemical Response of Graphene

Simulated behavior of the hydrogen evolution reaction

Interface analysis

Interface control with multiple graphene

Multi-layer graphene Si/Graphene

Systematic approach at the interface between electrode and Uk Sim et al., ACS Appl. Mater. Inter. (2017)

Mechanism at the interface

Importance of the electronic band structures of catalytic surface on photoelectrode

Natural enzyme

Model System Study

- Research direction of model system
- 1. Study of carbon platform: From 2D monolayer graphene to pseudo-3D system of multi-layer of graphene and graphene quantum sheets
- 2. Study of metal active sites: <u>Synthetic bioinspired carbon-based catalyst</u>

²³*Wet-resistance adhesives Found in Nature*

Tube-building polychaete

Barnacles

C. crescentus

Irish Moss, (C. crispus)

Biofilms

Mussels

Mussel Adhesion

Processes: molding \rightarrow secretion \rightarrow curing

- 1. Water-resistant adhesion
- 2. Versatile adhesion

Ship hull Rocks Water plant leaves Feathers Fish skin Drinking bottles Teflon®

https://youtu.be/dPgzSHe9fg8

Mussel adhesion : DOPA-Lys Motif

Synthetic Bioinspired Carbon-based Catalyst Poly(dopamine): Adhesive proteins secreted by marine mussels

Uk Sim et al., Bull. Kor. Chem. Soc. (2018)

Characterization of Carbon Nanosheet

