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ABSTRACTS 
 

The helmholtz free energy or an equation of state plays the key role in the calculation 
of phase equilibria and properties. Such information is usually available for vapor, 
partially available for liquids, and rarely available for solids. When it is not available, 
supplementary information is needed. Thus different methods are in use for the phase of 
interest. In this study, various methods were systematically presented and their relations 
with available information were discussed. 
 
INTRODUCTION 
 

Thermodynamic analysis often requires the computation of phase equilibria and 
properties such as volumes, enthalpies, entropies, etc. of real pure fluids and their 
mixtures. These properties are usually supplied by various calculation methods that 
depend on information available. Given the ideal gas heat capacity and the PVT 
equation of state that describes the PVT behavior for a wide range of density from the 
ideal gas to solid, a property change of a substance from T1 and P1 to T2 and P2 at the 
constant composition can be evaluated along a path; from the real substance at T1 and P1 

to the ideal gas at T1 and 1 bar, to ideal gas at T2 and 1 bar, and to real substance at T2 
and P2. Since the ideal gas portion of the path is simply evaluated with the heat capacity, 
we concentrate on the isothermal change from the ideal gas to real fluids, for the 
evaluation of which an equation of state is needed. Such information is usually available 
for vapor, partially available for liquids, and rarely available for solids. If they are not 
available, supplementary information is needed. Thus depending on the information and 
the phase of interest, different methods are developed for property evaluations. 
Properties calculation methods presented in a research paper or a textbook tend to deal 
with a specific problem separately and could lead to confusions on the underlying 
principles.  

The fundamental and comprehensive information is given by the Helmholtz free 
energy as a function of pressure, volume and composition for fluid phases. Since these 
variables are canonical variables, other thermodynamic properties are obtained most 
readily. The statistical mechanical derivation of real fluid properties begins with the 
configurational partition function (Reed and Gubbins, 1973). Once the configurational 
partition function is known the Helmholtz free energy is derived, from which 
expressions for other thermodynamic properties follow. The configurational partition 
function is solved for low-density gases to give the virial equation of state (Reed and 
Gubbins, 1973). However, the solution of the configurational partition function is a 
formidable task even for simple dense fluids. Thus a general practice for complex 
molecules in fluid phases is to represent the configurational Helmholtz energy in the 
mean field approximation as a sum of various contributions from; the hard sphere 



interaction, the dispersion interaction, the chain formation, and the association as in 
SAFT (Chapman et al., 1989). Alternatively, starting from molecular chains in a lattice 
frame various contributions are incorporated to describe real fluid behaviors as in lattice 
fluid models (Sanchez and Lacombe, 1976; You et al., 1994, Yeom et al., 1999). 
Recently the applicable range of these methods are extended to polymers and hydrogen-
bonding systems. 

Information needed for phase equilibria and properties calculation may also be 
supplied by an equation of state such as SRK or PR developed on empirical bases. 
These equations may be used to derive the Helmholtz free energy, which in turn 
becomes the basis for obtaining other property equations. However, the PVT equation 
of state is not a fundamental equation and the derivation of equations for other 
thermodynamic properties is less convenient. Complex mixing rules were proposed to 
describe mixture properties more accurately.  

For liquid phases we may not have and equation of state. Then we would need an 
excess Gibbs function model, vapor pressure and the saturated liquid volume. In 
principle, the pressure derivative of the excess Gibbs function yields the excess volume. 
However, the excess Gibbs function is generally represented as a function of 
temperature and composition. The pressure effect on volume is ignored. Thus it does not 
have all the information that an equation of state has and does not give information on 
the excess volume. It is used mainly for low-pressure liquids.  

The Helmholtz free energy or an equation of state for fluids does not extrapolate to 
solid phases. If a solid component constitutes a phase, other information is needed such 
as heat capacities, the enthalpy changy on melting, and the triple point temperature. A 
solid mixture may forms a solid solution, in which case the problem becomes more 
complex. The present work is intended to discuss and to present the computation 
methods for phase equilibria and the properties depending on the information we have.  

 
PHASE VOLUME 
 

When pressure is given as a function of temperature, volume and composition by a 
PVT equation of state valid for both gases and liquids,  

}){,,( ixvTPP =        (1) 

the equation is solved for phase volumes at the given P, T, and {xi}. If the Helmholtz 
free energy is given, the equation of state is derived to give, 

( ) nTVAP ,/ ∂∂−=        (2) 

For given T, P, and {xi} the equation of state is solved for the molar volume v, which is 
then used to obtain other thermodynamic properties. In the two-phase region, we can 
choose the volume either for the saturated liquid or for the saturated vapor. Depending 
on the choice we have either liquid properties or vapor properties. 

The primary concern of some models like the PR equation of state is to calculate 
phase equilibria. Thus the calculated volume is not very accurate. Excess Gibbs function 
models do not yield the information on volume.  
 
ENTHALPIES AND OTHER PROPERTIES 
 

Expressions for thermodynamic properties are derived from the Helmholtz free 
energy. For enthalpy and entropy, 
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Or we may start with an equation of state to have (Prausnitz et al., 1999) 
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These equations are used for property changes including those on phase transition and 
mixing. The excess Gibbs function may be used to have the excess enthalpy. 
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The excess enthalpy calculation was reported by Kehiaian et al. using an excess 
Gibbs function model (Kehiaian et al., 1991). The equation of state approaches is 
reported by Park et al. (1999) among others. In both approaches the simultaneous 
calculation of the excess enthalpy and phase equilibria were discussed.  
 
PHASE EQUILIBRIA  
 

The condition for phase equilibria is well established.  
βα μμ ii =        (9) 

The chemical potenential is related with the fugacity by 
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where the superscript r denotes the a reference state. From eqns (9) and (10) we have 
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Thus, regardless of the reference states that are the same or not, we have the phase 
equilibrium conditions written for fugacities (Prausnitz et al., 1998).  

βα
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Either eqn (9) or (12) may be used for phase equilibrium calculations. However, the 
fugacity relation is more convenient since they do not depend on reference states.  
 
FUGACITY 
 

If we begin with the Helmholtz free energy, we have the chemical potential by the 
relation, 

( )
jnVTii nA ,,/ ∂∂=μ       (13) 

To use the chemical potential relations, the chemical potential difference is often 
convenient. Subtracting both sides of this equation by the pure ideal gas chemical 
potential at the same temperature and 1 bar we have 
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This relation is easily converted to the fugacity relation. Since the fugacity of a 
component in a phase π is related with chemical potential by

 



]/)exp[( 0
, RTf ipureii μμππ −=

     (15)
 

If we have an equation of state instead of the Helmholtz free energy, the following 
relation conveniently determines the fugacity. 
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where the fugacity coefficient is given by (Prausnitz et al., 1998),  
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We can still write the fugacity of a component in a condensed phase even if we do not 
have an equation of state. 
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where the activity coefficient is from an excess Gibbs function model, 
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To use this equation we need vapor pressure, equation of state for vapor phase, and the 
molar volume of the condensed phase. A supercritical component does not have vapor 
pressure. The vapor pressure of a solid component may be too low to measure. Then we 
need methods to cope with such situations. We will return to these problems. 
 
VAPOR PHASE 
 

The vapor phase fugacity of a component is readily obtained using eqn (15) from the 
Helnholtz free energy   
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or using eqn (16) from an equation of state
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This method applies to any component in vapor phase regardless of the stable phase of 
the component at the condition. A Helmholtz free energy equation or an equation of 
state is needed. For low-pressure applications, the ideal gas phase may sometimes be 
assumed. 
 
LIQUID PHASE 
 

With an equation of state the fugacity of a liquid phase is written by eqn (15) or (16) 
as done for a component in vapor phase regardless of the species’ stable state. 
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An equation of state may not be available for liquid phases. Then the liquid phase 
fugacity is written by 



l
i

l
i

l
ipure

l
i xff γ,=        (25) 

where the activity coefficient is from an excess Gibbs function model, 
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Now the problem is how to obtain the pure component fugacity. For a subcritical fluid 
component, the fugacity of a pure fluid is readily written as 
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However, the evaluation of the pure component fugacity presents difficulties for a 
supercritical component or for a solid component.  

It is interesting to compare eqns (24) and (25).  
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The pure component fugacity obtained using either eqn (27) or (28) depends on 
temperature and pressure. The activity coefficient given by eqn (26) depends on 
temperature and composition while that given by eqn (29) depends on temperature, 
pressure and composition. In fact, an excess Gibbs function model generally depends on 
temperature and composition but not on pressure. Thus its use is generally limited to 
low pressure applications. 

To use eqn (27) we need vapor pressure or the liquid molar volume. They cannot be 
determined experimentally for a supercritical component, but may be obtained by 
extrapolating vapor pressure and the saturated liquid volume along the vapor-liquid 
coexistence curve to supercritical region. Based on this concept, eqn (27) is modified to 
give  
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The fugacity values of a pure component at the reference pressure of 1bar are available 
for some common gases as functions of the reduced temperature (Prausnitz et al., 1998). 
The relation enables the pure component fugacity at a reference pressure be corrected 
for high pressures. 

In the Henry’s law based applications for a sparingly soluble supercritical component 
in liquid phases, the component fugacity is written by the relation. 
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The superscript ∞ denotes the state at the infinite dilution. Clearly the Henry’s constant 
depends on temperature, pressure and the composition of the solute-free solvent. To 
correct the Henry’s constant at a reference pressure for high-pressure applications, the 
following relation is used. 
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This corresponds to the Krichevsky-Kasarnovsky equation (Prausnitz et al., 1998). The 
availability of the partial molar volume at the infinite dilution is limited. Unless we have 
experimental data for them, we need an equation of state applicable to liquids to obtain 



the volume. But then we would not use the Henry’s law based method. 
For a solid component in liquid state we are usually interested in properties for a wide 

range of composition up to its solubility. Thus the Henry’s law based representation is 
not used. We first calculate the chemical potential difference of a solid and the 
hypothetical liquid of the same component along the path; (1) from the system T and P 
to the saturated solid isothermally, (2) to the triple point along the solid-vapor 
equilibrium line, (3) the transition form solid to liquid at the triple point, (4) from the 
triple point to super cooled liquid at the system T along the extended vapor-liquid 
equilibrium line, (5) from the super cooled liquid T to the system T and P isothermally 
[7]. 
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Since the heat capacity contribution and the phase transition volume are usually small, 
the equation may be approximated by 
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We now have the fugacity ratio. 
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This equation is particularly convenient and generally used for solid-liquid equilibria 
since the same fugacity ratio appears in the equilibrium conditions.  

 
SOLID PHASE 
 

Equations of state are not generally available for solid phases. For solid-liquid 
equilibria we have discussed the fugacity ratio, eqn (37), in the section on the liquid 
phase. The ratio cannot be used for gas-solid equilbria. We need to evaluate the fugacity 
of a solid component in solids. With the chemical potential, the fugacity of a pure 
component may be written, 
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For a component in the pure solid phase the common approach is to use the chemical 
potential difference that is readily found when the sublimation pressure and molar 
volume are known,  

)()ln(ln ,,
0

,,
sat

i
s

ipure
sat
i

sat
i

s
ipureipure

s
ipure PPVPRTfRT −+==− φμμ   (39) 

If the vapor pressure is very small and unknown, we can still proceed assuming 
essentially zero vapor pressure, 
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where the first term in the right hand side of the last equality is discussed and presented 
by eqn (35). It may also be approximated by eqn (36). This relation may also be written 
as 
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To apply this method we need an equation of state and use eqn (28) since the liquid 
phase property is for hypothetical fluids. This method was applied in calculating the 



solubility of essentially nonvolatile solids in supercritical gases (You et al., 1993). 
If the solid phase is not pure, then a solid solution is assumed.  
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An apparent solid mixture may or may not form a solid solution. We have limited 
information on the non-ideality of solid solutions. 
 
CONCLUSION 
 

Various methods were systematically presented for the calculation of phase equilibria 
and thermodynamic properties and their relations with available information were 
discussed. The Helmholtz free energy or an equation of state suffices for all properties. 
Supplementary information and different methods were presented when they are not 
available. Particular attention was given to the fugacity of a component that is not stable 
at the given condition in its pure state. 
 
NOTATIONS 
 
A Helmholtz free energy 
P  pressure 
S entropy 
T  temperature 
V volume 
f fugacity 
n number of moles 
s  molar entropy 
u  molar internal energy 
v molar volume 

v  partial molar volume 
x mole fraction 
ϕ fugacity coefficient 
μ chemical potential 
superscripts 
E excess properties 
l liquid phase 
s   solid phase 
sl   property change on solid-liquid transition 
sat saturated liquid or solid 
v vapor phase 
α,β,π a phase 
0 ideal gas state at 1 bar 
* activity coefficient normalized for the infinite dilution reference state 
subscripts 
i a component 
pure,i a component at the pure state 
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