6. Functions and Storage Class

6.1 Functions

* Top—down method of programming
: breaking into small, manageable piece
*0OOO Oobooo oo
— repeated operation
— modularization: maintenance
— readability
—a black box defined by input and output
* function definition
type function_name (parameter list)
{
decalaration
statements

}
ex > see p.198

* by default type int is assumed if not specified

* return statement
—value or expression is passed to caller
— control is passed back to caller

ex > see p.201

* function prototypes

— functions should be declared before they are used.

* function declaration style
ex)
int add(int a , in b)
{

add (a,b)
inta, intb;

{

* funciton prototype style

int add(int a, int b) ; - ANSI standard
int add(ini, int) ; - ANSI allowed

* an alternate style for function declaration order
- page 206

* function call-by—value
—call by value

—call by reference

* developing a large programs

— use of make program

6.2 Storage Class

- 000 0000 (scope)d OODOO OO

Qauto @OOO)
— default for variables defined within function bodies
—localized variable within a block

@ extern @O O0O)
— default for varible defined outside function bodies
— global variable across the blocks

@ register @ OODODOO)
— variable should be stored in high speed register
—size of variable is limited by the CPU of computer
— number of register variable is limited by the CPU of computer

@) static (CQOO0O)
—value—retention use

ex = page 220.

(B) external static variable
— similar to external varible

— external variable is only used in a file scope

* default initialization
external, static variable - initialized by O

automatic, regixter variable - initialized by garbage

* function recursion

see p.223 & 224 for example

