
6. Functions and Storage Class

6.1 Functions

* Top-down method of programming

 : breaking into small, manageable piece

* 함수를 사용하는 이유

 - repeated operation

 - modularization: maintenance

 - readability

 - a black box defined by input and output

* function definition

 type function_name (parameter list)

 {

 decalaration

 statements

 }

ex  see p.198

* by default type int is assumed if not specified

* return statement

 - value or expression is passed to caller

 - control is passed back to caller

ex  see p.201

* function prototypes

 - functions should be declared before they are used.

* function declaration style

 ex)

 int add(int a , in b)

 {

 :

 }

 add (a,b)

 int a, int b ;

 {

:

 }

* funciton prototype style

 int add(int a, int b) ;  ANSI standard

 int add(ini, int) ;  ANSI allowed

* an alternate style for function declaration order

  page 206

* function call-by-value

 - call by value

 - call by reference

* developing a large programs

 - use of make program

6.2 Storage Class

- 변수의 통용범위 (scope)와 존속기간을 결정

(1) auto (자동변수)

 - default for variables defined within function bodies

 - localized variable within a block

(2) extern (외부변수)

 - default for varible defined outside function bodies

 - global variable across the blocks

(3) register (레지스터변수)

 - variable should be stored in high speed register

 - size of variable is limited by the CPU of computer

 - number of register variable is limited by the CPU of computer

(4) static (정적변수)

 - value-retention use

ex  page 220.

(5) external static variable

 - similar to external varible

 - external variable is only used in a file scope

* default initialization

 external, static variable  initialized by 0

 automatic, regixter variable  initialized by garbage

* function recursion

 see p.223 & 224 for example

