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Engineering Applications: Partial Differential Equations

Partial Differential Equations
An equation involving partial derivatives of an unknown function of two or more independent variables is called a partial differential equation, 
PDE. The order of a PDE is that of the highest-order partial derivative appearing in the equation. 

A general linear second-order differential equation is 

Depending on the values of the coefficients of the second-derivative terms eq. (8.1) can be classified int one of three categories. 

 : Elliptic 

Laplace equation(steady state with two spatial dimensions) 

 : Parabolic 

Heat conduction equation(time variable with one spatial dimension) 

 : Hyperbolic 

(8.1)



Wave equation(time variable with one spatial dimension) 

Finite Difference: Elliptic Equations
Elliptic equations in engineering are typically used to characterize steady-state, boundary-value problems. 

The Laplace Equations
The Laplace equation 

The Poisson equation 

Solution Techniques
The Laplacian Difference Equation : use central difference based on the grid scheme 

and 

Substituting these equations into the Laplace equation gives 

For the square grid, , and by collecting terms 

This relationship, which holds for all interior point on the plate, is referred to as the Laplacian difference equation. 

This approach gives a large size of linear algebraic equations. 



The Liebmann Method : For larger-sized grids, a significant number of the terms will be zero. When applied to such sparse system, 
full-matrix elimination methods waste great amounts of computer memory storing these zeros. For this reason, approximate methods 
provide a viable approach for obtaining solutions for elliptical equation. The most commonly employed approach is Guass-Seidel, 
which when applied to PDEs is also referred to as Liebmann's method. 

Boundary Conditions
Derivative boundary conditions : including the derivative boundary conditions into the problem. 
Irregular boundaries : use contstants to depict the curvature. 

The Control Volume Approach

Two different developing approximate solutions of PDEs 

Finite-difference : divides the continuum into nodes and convert the equations to an algebraic form. 
Control volume : approximates the PDEs with a volume surrounding the point. 

Finite Difference: Parabolic Equations
The Heat Conduction Equation
Fourier's law of heat conduction 

which is the heat-conduction equation. 

Problems of parabolic equation 

consider changes in time as well as in space 
temporally open-ended 
consider the stability problem 

Explicit Methods
With finite divided differences 

and 

Figure 8.1: Two different perspectives for developing approximate solutions of PDEs.
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which give 

where . 

Convergence and Stability 

Convergence : as  and  approach zero, the results of the finite-difference technique approach the true solution. 
Stability : errors at any stage of the computation are not amplified but are attenuated as the computation progresses. 

Convergence: consider the following unsteady-state heat-flow equation in one dimension. 

Let the symbol  to represent the exact solution and  to represent the numerical solution. Let , at the point 

, . By the explicit method, 

where . Substituting  into the above equation, 
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Figure 8.2: A computational modelcule for the explicit form.
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By using Taylor series expansion, 

Substituting these into (8.17) and simplifying 

Let  be the magnitude of the maximum error in the row of calculation for , and let  be an upper bound for the 

magnitude of the expression. If , all the coefficients in the above equation are positive (or zero) and we may write the inequality 

This is true for all the  at , so 

This is true at each time step, 

because , the errors at , are zero, as  is given by the initial conditions. 

As ,  if , and , because, as both  and  get smaller 
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Consequently, the explicit method is convergent for , because the errors approach zero as  and  are made smaller. 

A Simple Implicit Method
The problems of explicit finite-difference formulation 

stability 
exclusion of information that has a bearing on the solution 

See figure 30.6 at p838. 

In implicit methods, the spatial derivative is approximated at an advanced time level . 

When this relationship is substituted into the original PDE, the resulting difference equation contains several unknowns. Thus, it cannot be 
solved explicitly by simple algebraic rearrangement. Instead, the entire system of equations must be solved simultaneously. This is possible 
because, along with the boundary conditions, the implicit formulations result in a set of linear algebraic equations with the same number of 
unknowns. 

The Crank-Nicholson Method
The Crank-Nicolson method provides an alternative implicit scheme that is second-order accurate in both space and time. To do this, develops 
difference approximations at the midpoint of the time increment. 

Substituting and collecting terms gives 

Finite Element Method
Finite-difference method 

divide the solution domain into a grid of discrete points or nodes 
write the PDE for each node and replace the derivative with finite divided differences 
it is hard to apply for system with irregular geometry, unusual boundary conditions, or heterogeuous composition 

Figure 8.3: Computational molecules demonstrating the funcdamental differences.
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Finite-element method 
divide the solution domain into simply shaped regions or ``elements''. 
develop an approximate solution for the PDE for each of these elements. 
link together the individiual solutions 

Calculus of variation
The calculus of variations involves problems in which the quantity to be minimized appears as an integral. As the simplest case, 

Let  is the quantity that takes on an extreme value. Under the integral sign,  is a known function of the indicated variables , 

, and  but the dependence of  on  is not fixed: that is,  is unknown. Thus, the calculus of variation seeks to optimize 

a special class of functions called functionals. A functional can be thought of as a ``function of function.'' 

In figure 8.3.1 two possible paths are shown. The difference between these two for a given  is called the variation of , , and 

introduce  to define the arbitrary deformation of the path and a scale factor  to give the magnitude of the variation. The function 

 is arbitrary except for two restrictions. First 

which means that all varied paths must pass through the fixed end points. Second, 
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Figure 8.4: A varied path.
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With the path described with  and , 

and 

Let  be the unknown path that will minimize . Then  describes a neighboring path. Then  is now a 

function of new parameter : 

and the extreme value is 

The partial derivative of  is 

From eq. (8.32) 

Equation (8.36) becomes 

Integrating the second term by parts 
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The integrated part is zero and 

Multiply 

The condition for stationary is 

which is known as the Euler(or Euler-Lagrange) equation. 

Example: The shortest distance between two points

We have to determine the path that minimize the distance between two points which are given as  and . 

Equation (8.44) is a funtional that is a function of path  and our problem is to find  which will make 

as small as possible. And  is called an extremal. Assuming a neighboring line 

Select a  make 
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a minimum. Now  is a function of the parameter ; when , . Our problem then is to make  take its minimum 

value when . 

Differentiating gives 

 is 

Then 

Put 

Integrate by part 

The first term is zero and because  is arbitarary function, 

In the Euler equation case, 

Then 
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and the Euler equation gives 

From this 

Solving for 

and 

The Rayleigh-Ritz Method
It is based on an elegant branch of methematics, the calculus of variations. With this method we solve a boundary-value problem by 
approximating the solution with a finite linear combination of simple basis functions that are chosen to fulfill certain ceiteria, including 
meeting the boundary conditions. 

For example, consider the second-order linear boundary-value problem over : 

The functional that corresponds to the above equation is 

We can transform eq. (8.62) to eq. (8.61) through the Euler-Lagrange conditions, so optimizing (8.62) give the solution to eq. (8.61). 

The benifits of operating with the functional rather than the original equation: 

only the first-order instead of second-order derivative 
simplify the mathematics and permits to find solutions even when there are discontinuities that cause  not to have sufficiently high 
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derivatives. 

If we know the solution to our differential equation, substituting it for the solution will make  a minimum. Let , which is the 

approximation to , be a sum: 

Two conditions on the 's which is called as trial function. 

chosen such that  meets the boundary conditions 

's are linearly independent. 

Now fina a way of getting values fro the 's to force  to be close to  using the functional. 

To minimize , take its partial derivatives with respect to each unknown  and set to zero. 

The Collocation and Galerkin Method

The collocation method is another way to approximate  which is called a ``residual method.'' 

Algorithm of the collocation method: 

approximate  with  equal to a sum of trial function, usually chosen as linearly independent polynomials. 

substitute  int  and attempt to make  by a suitable choice of the coefficients in . 

Like collocation, Galerkin method is a ``residual method'' that use the , except that now we multiply  by weighting function, 

. 
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The advantages of collocation and Galerkin method 

amount of arithmetic is cetainly less 
much easier and never have to find the variational form. 

Finite elements for ordinary-differential equations
The disadvantages of the previous methods 

Find a good trial function(it it not so easy) 
polynomial may interpolate poorly. 

The remedy to the above problems is based on the observation that even low-degree polynomials can reflect the behavior of a function if based 
on values that are closely spaced. 

1. subdivide  into  subintervals, called elements, that join at  which are called the nodes of the 

interval. 

2. apply the Galerkin method to each element separately to interpolate between the end nodal values,  and , where 

these 's are approximations to the 's. 

3. use a low-degree polynomial for . 

4. combine the separate element equations 

5. adjust for the boundary conditions and solve equations to get approximations to  at the nodes. 
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