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* Supplementsforstability
— For input-output mode,
« Asymptotic stability (AS): For a system with zero equilibrium
point, ifu(t)=0 for all timet implies y(t) goes to zero with time.
— Sameas “General stability”: all poles have to be in OLHP.
e Marginally stability (MS): For a system with zero equilibrium
point, ifu(t)=0 for all timet implies y(t) is bounded for all time.

— Same as BIBO stability: all poles have to be in OLHP or on
the imaginary axis with any poles occurring on the imaginary
axis non-repeated.

— If the imaginary pole is repeated the mode is tsin(wt) and it is
unstable.

— For state-spacemodel,

» Even though there are unstable poles and if they are cancelled ly
the zeros exactly (pole-zero cancellation), the system is BIBO
stable.

* Internally AS: if u(t)=0 for all timet implies that x(t) goes to zero
with time for all initial conditions x(0).
— Cancelled poles have to be in OLHP.
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DEFINITION OF STABILITY

« BIBO Stability

— “Anunconstrained linear system issaid to be sable ifthe
output responseisbounded for all bounded inputs. Otherwise
itissaid tobe unstable.”

* GeneralStability

— Alinear system is gtable if and only if all roots (poles) of the
denominator in thetransfer function are negative or have
negativereal parts(OLHP). Otherwise, thesystemis unstable.

P What isthediffer ence between thetwo definitions?

Open-loopstable/unstable

Closed-loop stable/unstable

Characteristic equation: 1+G, (s)=0

Nonlinear system stability: Lyapunov and Popov stability
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EXAMPLES
» Feedbackcontrolsystem
G:(9) =K, R sl Ky
1 1
9=—— G_(s)=—
/(9 2s+ n(®) s+1
1
G, (s)=G,(s) = . . ‘
(&) =6u8) =g — —
~ . /[ \
C(S): KITGCG\Gp j— ///\\;\ // \\\ "/I \\l 4
R(s) 1+GG,GG, AT T
\_/ \ \
_ Ke(s+1) TR
108*+178" +8s+1+ K, e e

— Usingroot -finding techniques, the poles can be calculated.
— AsK_ increases, thestep responsegetsmor eoscillatory.
— If K.>12.6,thestep responseisunstable.
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« SimpleExamplel
G(9=K., G(9=K,, G,(9=1 G, (9=K/,s+]
Characterigtic equation: 1+Gg, (9) =1+K K K /(t ;s+1) =0
t s+(1+KKK)=0 P s=-(1+K KK )/t
\ KKK, >-1 for sability
— When Kp>0 and K >0, thecontroller should bereverseacting
(K>0) for stability.
« Simpleexample2
Gi(9) =K., G(8)=1(2s+1), G,(9=1, G,(s) =l/(5s+])
Characteristic equation: 1+K/ [(2s+1)(5s+1) | =0
10s*+7s+1+K =0 b s=§ 7+.[49- 40(1+K ) W20
\ K,>-1 for stability
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« Examplefor Routh test
— Characteristic equation
10s® +17s* +8s+1+K_ =0
— Necessarycondition
1+K.,>0pb K_>-1

» If any coefficient is not positive, stop and conclude the systemis
unstable. (at least one RHP pole, possibly more)

— Routh array

$|{10 8 b = W =7.41- 0.588K,
s? | 17 1+K, b - 170)- 100) _,
s$|b b 17
L | g o = RA+KI-1700) _y,
bl [
— Stable region

b =7.41- 0.58&_ >0andK >-1 b -1<K_ <126
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ROUTH-HURWITZ STABILITY CRITERION

 Fromthecharacteristic equation of the form:

a,s'+a,,8 "+ +asta =0 (g, >0
« Constructthe Routh array

Row b =@ 8 ada)/a, | ke ad®
SRRz b =(aa - Ads) A b Tk
s aCF)Df -3 hs : e
Sn-2 b3 . o a
s™3 @ c, - ¢ =(ba. ;- a.b)/b =y b )"
5 : C, = (blanS - an-lbs)/bl C,=- at”l" a;';/h
<0 _Z]_\ -0

— A necessary condition for stability: all a;'s are positive

— “A necessary and sufficient condition for all roots of the characteristic
equation to have negative real partsisthat all of the elements in the
left column of theRouth array are positive.”
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e Supplementsfor Routh test
— Itisvalid only when the characteristic equation isa polynomial
of s. (Timedelay cannot be handled directly.)
— Ifthecharacteristic equation containstimedelay, use Pade
approximation to make it as a polynomial of s.
— Routh test can beused to test if thereal part of all roots of
characteristic equation arelessthan -c.
» Original characteristic equation
a,8'+a,,S" +-+as+8,=0 (a,>0)
* Modify characteristic equation and apply Routh criterion
a,(s+C)" +g,,(s+c)" "+ +a(stc)+q

=gy +ag,s" +--- +aB+ap=0

— Thenumber of sign changein the 1 column of the Routh
array indicatesthe number of polesin RHP.

— If thetworowsareproportional or theany of 1% columnis
zer 0, Routh array cannot be proceeded.
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« Remedy for special cases of Routh array
— Only thepivot element iszero and othersarenot all zero

+ Replace zero with positive small number €), and proceed.

 |If thereisno sign change in the 1% column, it indicates there is a
pair of pure imaginary roots (marginally stable). If not, the sgn
change indicates the no. of RHP poles.

— Entirerow becomes zero (two rows are proportional)

im It implies the characteristic polynomial is divided exactly by he

Re polynomial one row above @lways even-ordered polynomial).

» Replace the row with the coefficients of the derivative @uxiliary
polynomial) of the polynomial one row above and proceed.

m » This situation indicates at least either a pair of real roots
Re symmetric about the origin (one unstable), and/or two complex
pairs symmetric about the origin (one unstable pair).

* |If thereis no sign change after the auxiliary polynomial, it

Im indicated that the polynomial prior to the auxiliary polynomial
e has all pure imaginary roots.
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ROOT LOCUSDIAGRAMS

« Diagram shows the location of closed-loop poles
(roots of characteristic equation) depending on
theparametervalue.(Singleparametric study)

 Find theroots as afunction of parameter

 Each loci starts at open-loop poles and
approaches to zeros or =¥,

For G(9) = N(9/ D(s)
lim(D(s) +K:N(s))=D(s) = 0(poles)
lm(D(9 +KN(9) = N(9 =0 (zeros)

Stability
limit

Ex) (s+1(s+2)(s+3)+ 2Kc =0 Open -loop
poles

b K, <30
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DIRECT SUBSTITUTION METHOD

 Findthe value of variable that locates the closed-
loop poles attheimaginary axis (stability limit).

 Example
— Characterigtic equation: 1+G,G, =10s’ +175” +8s+1+ K, =0
— Ontheimaginary axis s becomes jw.

-10jwe- 17w? +8 jw +1+ K, = (1+K,, - 17w?) + jw(8- 10w*) =0
\ (1+K, -1 =0 and w(8- 10n*)=0
\w=0orw?=08pP K_ =-1orK_ =12€

— Try atest point such as K =0
10s’ +175* +8s+1= (s +1)(2s +1)(5s +1) =0 (All stable)
\ Stablerangeis - 1<K, <12.6
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BODE STABILITY CRITERION

* Bodestability criterion
“Aclosed-loop system is unstable if the frequency response of the
open-loop transfer function Gy =G.G,G, G, has an amplitude
ratio greater than oneat thecritical frequency. Otherwise, the
closed-loop system isstable.”

— Applicable to openloop stable systemswith only onecritical

frequency
— Example: 10—, S ——
m_-_-_—-"\} K =20
GOL :LS AR 1 \\T;\/‘ K -4
(0.55+)) 01 =1 KA
T NS
0.01 ; AN\
K. | AR Classification 0 ;
0.25 stable b0, ~® l
; D g \!
4 1 Marginally stable N
~270 Ll [ENE TR N AR
20 5 unstable 0.01 0.1 1 e 10 100
Frequency (rad/min)
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GAIN MARGIN (GM) AND PHASE MARGIN (PM)

Margin: How close is a system to stability limit?
Gain Margin (GM) —_

GM =1/ ARW Mo el LN
— For stability, GM>1  SicalorPnace
Phase Margin (PM)

PM :f (Wg)‘% Gaincrossover

|

|

|

— For ﬂablllty, PM>0 freq. \m_ margin |
S

PoL TN
(deg) Phase
i
e Ruleofthumb =

— Well-tuned system: GM=1.7-2.0, PM=30° -45°

— LargeGM and PM: sluggish

— Small GM and PM: oscillatory

— If theuncertainty on processissmall, tighter tuningispossible.
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NYQUIST STABILITY CRITERION

* Nyquist stabilitycriterion
“If N isthe number of timesthat the Nyquist plot encirclesthe
point (-1,0) in the complex plane in the clockwise direction, and
P isthe number of open-loop poles of G, (s) that liesin RHP,
then Z=N+P isthe number of unstable roots of the closed-loop
characteristic equation.”

— Applicableto even unstable systems and the systemswith
multiple critical frequencies

— Thepoint (-1,0) correspondsto AR=1and PA=-180°.

— Negative N indicatestheencirclement of (-1,0) in
counter clockwisedir ection.
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EFFECT OF PID CONTROLLERSON
FREQUENCY RESPONSE

e P
— AsK;increases, AR, increases(faster but destabilizing)
— Nochangein phaseangle
. PI
— IncreaseARg. moreat low freqg.
— Ast decreases, AR, increases(destabilizing) :
— Morephaselag for lower freg. (movescritical freq. toward
lower freq. => usually destabilizing) i ~ 1
« PD = ==
— IncreaseAR, moreat high freq. g
— Ast jincreases, AR, increasesat high freg. (faster)

— Morephaselead for high freq. (movescritical freg. toward
higher freq. => usually stabilizing)
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« Someexamples
K (2s+1)(s+1)
G(s) = . .
s(20s+1)(10s+1)(0.55+1) Puretime delay

i | .

1st orderlag 2ndorderlag

Stable3rdorderlag +Pcontrol GMand PM

Im A Im 4

GM

PM

unstable
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CLOSED-LOOPFREQUENCY RESPONSE
* Closed-loop amplituderatio and phase angle

‘ Y(jw) e, e,
= |— 14 ) .
R(jw) O L S
H 1.0
y = 4 Y ( JW) M 08 : c1
R(jw) sl ==
|

Ll
For set point change,

— M should be unity asw ® 0. (No offset)

— M should maintain at unity up to ashigh afreq. as possible.
(rapid approach to a new set point)

— A resonant peak (M) in M should be present but not greater
than 1.25. (largew, impliesfaster responseto a new set point)

— Largebandwidth (w,,) indicates arelatively fast response with
ashort risetime.
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ROBUSTNESS

» Definition
“Despitethe small change in the processor some inaccuracies in
theprocessmodel, if thecontrol system isinsensitivetothe
uncertaintiesin the system and functionsproperly.”

— Therobust control system should be, despitethe certain size of
uncertainty of the model,
» Stable
« Maintaining reasonable performance
— Uncertainty (confidence level of the model):
» Process gain, Time constants, Model order, etc.
* Input, output
— If uncertainty is high, the performance specification cannot be
too tight: might cause even instability
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