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CONTROLLER DESIGN

• Performance criteria for closed-loop systems
– Stable
– Minimal effect of disturbance
– Rapid, smooth response to set point change
– No offset
– No excessive control action
– Robust to plant-model mismatch

• Trade-offs in control problems
– Set point tracking vs. disturbance rejection
– Robustness vs. performance
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GUIDELINES FOR COMMON CONTROL
LOOPS

• Flow  and liquid pressure control
– Fast response with no time delay
– Usually with small high-frequency noise
– PI controller with intermediate controller gain

• Liquid level control
– Noisy due to splashing and turbulence
– High gain PI controller for integrating process
– Conservative setting for averaging control when it is used for

damping the fluctuation of the inlet stream

• Gas pressure control
– Usually fast and self regulating
– PI controller with small integral action (large reset time)
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• Temperature control
– Wide variety of the process nature
– Usually slow response with time delay
– Use PID controller to speed up the response

• Composition control
– Similar to temperature control usually with larger noise and

more time delay
– Effectiveness of derivative action  is limited
– Temperature and composition controls are the prime

candidates for advance control strategies due to its importance
and difficulty of control
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TRIAL AND ERROR TUNING

• Step1: With P-only controller
– Start with low Kc value and increase it until the response has a

sustained oscillation (continuous cycling) for a small set point
or load change. (Kcu)

– Set Kc = Kcu.

• Step2: Add I mode
– Decrease the reset time until sustained oscillation occurs. (  )
– Set              .
– If a further improvement is required, proceed to Step 3.

• Step3: Add D mode
– Decrease the reset time until sustained oscillation occurs. (  )
– Set            .

(The sustained oscillation should not be cause by the controller saturation)
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CONTINUOUS CYCLING METHOD

• Also called as loop tuning or ultimate gain method
– Increase controller gain until sustained oscillation
– Find ultimate gain (KCU) and ultimate period (PCU)

• Ziegler-Nichols controller setting
– ¼ decay ratio (too much oscillatory)

– Modified Ziegler-Nichols setting

0.5PCU/8PCU /20.6KCUPID

-PCU /1.20.45KCUPI

--0.5KCUP

KCController

PCU/3PCU /20.2KCUNo overshoot

PCU/3PCU /20.33KCUSome overshoot

PCU/8PCU /20.6KCUOriginal

KCController

Iτ Dτ

DτIτ
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• Examples

4.06.00.19No overshoot

4.06.00.31Some overshoot

1.56.00.57Original

KCController DτIτ

3.875.81.58No overshoot

3.875.82.60Some overshoot

1.455.84.73Original

KCController DτIτ
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• Advantages of continuous cycling method
– No a priori information on process required
– Applicable to all stable processes

• Disadvantages of continuous cycling method
– Time consuming
– Loss of product quality and productivity during the tests
– Continuous cycling may cause the violation of process

limitation and safety hazards
– Not applicable to open-loop unstable process
– First-order and second-order process without time delay will

not oscillate even with very large controller gain

=> Motivates Relay feedback method. (Astrom and Wittenmark)
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RELAY FEEDBACK METHOD

• Relay feedback controller
– Forces the system to oscillate by a relay controller
– Require a single closed-loop experiment to find the ultimate

frequency information
– No a priori information on process is required
– Switch relay feedback controller for tuning
– Find PCU and calculate KCU

– User specified parameter: d

– Use Ziegler-Nichols Tuning rules for PID tuning parameters
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Decide d in order not to perturb the
system too much.
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DESIGN RELATIONS FOR PID
CONTROLLERS

• Cohen-Coon controller design relations
– Empirical relation for ¼ decay ratio for FOPDT model
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• Design relations based on integral error criteria
– ¼ decay ratio is too oscillatory
– Decay ratio concerns only two peak points of the response
– IAE: Integral of the Absolute Error

– ISE: Integral of the Square Error

• Large error contributes more
• Small error contributes less
• Large penalty for large overshoot
• Small penalty for small persisting oscillation

– ITAE: Integral of the Time-weighted Absolute Error

• Large penalty for persisting oscillation
• Small penalty for initial transient response
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• Controller design relation based on ITAE for
FOPDT model

• Similar design relations based on IAE and ISE for
other types of models can be found in literatures.
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• Example1                            Example2
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• Design relations based on process reaction curve
– For the processes who have sigmoidal shape step responses

(Not for underdamped processes)

– Fit the curve with FOPDT model

– Very simple
– Inherits all the problems of FOPDT model fitting
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DIRECT SYNTHESIS METHOD

• Analysis: Given Gc(s), what is y(t)?
• Design: Given yd(t), what should Gc(s) be?
• Derivation

– If (Y/R)d = 1, then it implies perfect control. (infinite gain)
– The resulting controller may not be physically realizable
– Or, not in PID form and too complicated.
– Design with finite settling time:
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• Examples
1. Perfect control (Kc becomes infinite)

2. Finite settling time for 1st-order process

3. Finite settling time for 2nd-order process
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• Process with time delay
– If there is a time delay, any physically realizable controller

cannot overcome the time delay. (Need time lead)
– Given circumstance, a reasonable choice will be

– Examples
1.

2. With 1st-order Taylor series approx. (                  )

3.
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• Observations on Direct Synthesis Method
– Resulting controllers could be quite complex and may not even

be physically realizable.
– PID parameters will be decided by a user-specified parameter:

The desired closed-loop time constant (    )
– The shorter    makes the action more aggressive. (larger Kc)
– The longer    makes the action more conservative. (smaller Kc)
– For a limited cases, it results PID form.

• 1st-order model without time delay: PI
• FOPDT with 1st-order Taylor series approx.: PI
• 2nd-order model without time delay: PID
• SOPDT with 1st-order Taylor series approx.: PID
• Delay modifies the Kc.

• With time delay, the Kc will not become infinite even for the
perfect control (Y/R=1).
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INTERNAL MODEL CONTROL (IMC)

• Motivation
– The resulting controller from direct synthesis method may not

be physically unrealizable.
– If there is RHP zero in the process, the resulting controller

from direct synthesis method will be unstable.
– Unmeasured disturbance and modeling error are not

considered in direct synthesis method.

• Source of trouble
– From direct synthesis method
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Process is unknown
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• IMC
– Feedback the error between the process output and model

output.
– Equivalent conventional controller:

– Using block diagram algebra
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• IMC design strategy
– Factor the process model as

• contains any time delays and RHP zeros and is specified so
that the steady-state gain is one

• is the rest of G.
– The controller is specified as

• IMC filter f is a low-pass filter with steady-state gain of one
• Typical IMC filter:

• The      is the desired closed-loop time constant and parameter r is
a positive integer that is selected so that the order of numerator of
Gc

* is same as the order of denominator or exceeds the order of
denominator by one.
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• Example
– FOPDT model with 1/1 Pade approximation
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IMC based PID controller settings
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COMPARISON OF CONTROLLER DESIGN
RELATIONS

• PI controller settings for different methods
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EFFECT OF MODELING ERROR

• Actual plant

• Approx. model

– Satisfactory for this case
– Use with care

• All kinds of tuning method should be used for
initial setting and fine tuning should be done!!
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As the estimated time delay
gets smaller, the performance
degradation will be pronounced.
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GENERAL CONCLUSION FOR PID TUNING

• The controller gain should be inversely proportional to the
products of the other gains in the feedback loop.

• The controller gain should decrease as the ratio of time
delay to dominant time constant increases.

• The larger the ratio of time delay to dominant time constant
is, the harder the system is to control.

• The reset time and the derivative time should increase as
the ratio of time delay to dominant time constant increases.

• The ratio between derivative time and reset time is typically
between 0.1 to 0.3.

• The ¼ decay ratio is too oscillatory for process control. If
less oscillatory response is desired, the controller gain
should decrease and reset time should increase.

• Among IAE, ISE and ITAE, ITAE is the most conservative
and ISE is the least conservative setting.


