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CONTROLLER DESIGN

e Performance criteriafor closed-loop systems
— Stable
— Minimal effect of disturbance
— Rapid, smooth responseto set point change
— No offset

— No excessive control action
— Robust to plant-model mismatch

min (5 (We(t ) +w, Du?(t ))dt

KC’t | i D

 Trade-offs in control problems
— Set point tracking vs. disturbancer g ection
— Robustnessvs. performance
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GUIDELINES FOR COMMON CONTROL
LOOPS

e Flow and liquid pressure control
— Fast responsewith notimedelay
— Usually with small high-frequency noise
— PI controller with inter mediate controller gain

e Liquid level control
— Noisy dueto splashing and turbulence
— High gain PI controller for integrating process

— Conservative setting for averaging control when it isused for
damping thefluctuation of theinlet stream

e (Gas pressure control
— Usually fast and self regulating
— PI controller with small integral action (largereset time)
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e Temperature control
— Widevariety of theprocessnature
— Usually slow responsewith timedelay
— UsePID controller to speed up theresponse

e Composition control

— Similar totemperaturecontrol usually with larger noise and
mor etimedelay

— Effectivenessof derivativeaction islimited

— Temperatureand composition controlsaretheprime
candidatesfor advance control strategiesdueto itsimportance
and difficulty of control
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TRIAL AND ERROR TUNING

e« Stepl: With P-only controller

— Start with low K_ value and increaseit until theresponse hasa
sustained oscillation (continuouscycling) for asmall set point
or load change. (K,

— Set K. =K.
e Step2: Add | mode
— Decreasethereset timeuntil sustained oscillation occurs. (t )
- Sett, =3,
— |f afurther improvement isrequired, proceed to Step 3.

e Step3: Add D mode
— Decreasethereset timeuntil sustained oscillation occurs. { o, )

B, =3,
(The sustained oscillation should not be cause by the controller saturation)
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CONTINUOUS CYCLING METHOD

 Also called as loop tuning or ultimate gain method
— Increasecontroller gain until sustained oscillation
— Find ultimate gain (K.,) and ultimate period (P)

 Ziegler-Nichols controller setting
— Yadecay ratio (too much oscillatory)

Controller Kc t, t,
P 0.5K,
Pl 0.45K Poy/1.2
PID 0.6K, Py /2 0.5P,/8
— Modified Ziegler-Nicholssetting
Controller Kc t | t D
Original 0.6Ky Pey 2 Pc/8
Someovershoot 0.33K, Pey 2 Pou/3
Noovershoot 0.Ky Pey 2 Pou/3
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« Examples
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2e°
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Controller K. t,
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Kc tI tD
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« Advantages of continuous cycling method
— Noapriori information on processrequired

Applicabletoall stableprocesses

« Disadvantages of continuous cycling method

Time consuming

L oss of product quality and productivity during thetests

Continuouscycling may causetheviolation of process
limitation and safety hazards

Not applicableto open-loop unstableprocess

First-order and second-order processwithout time delay will
not oscillate even with very large controller gain

=> M otivates Relay feedback method. (Astrom and Wittenmark)
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RELAY FEEDBACK METHOD

 Relay feedback controller

— Forcesthesystem to oscillate by arelay controller

— Reguireasingleclosed-loop experiment to find the ultimate
frequency infor mation

— No apriori information on processisrequired
— Switch relay feedback controller for tuning

— Find P, and calculate K > N e I ——
4d l
KCU = — A Retay with
p a Dead Zone

— User specified parameter: d

F(’)rotcess N\ N\I«/N\

) ) utput — \/ V ¥
Decide d in order not to perturb the
system too much. S |~ 1L

Time

— UseZiegler-NicholsTuningrulesfor PID tuning parameters
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SIGN RELATIONS FOR PI
CONTROLLERS

oon controller design relation
relation for Yadecay ratiofor FOPDT

Table 12.2 Cohen and Coon Controller Design Relations

Controller Settings Cohen—Coon
P K, LT+ 030
Ko
17
PI K. - —10.
Xo [0.9 + 8/121]
. 9[30 + 3(6/7)]
! 9 + 20(8/7)
K 17167 + 38
‘ Ko 127
. 0{32 + 6(6/7)]
! 13 + 8(6/7)
. 46
D 11 + 2(8/7)
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« Design relations based on integral error criteria
— Yadecay ratioistoo oscillatory
— Decay ratio concernsonly two peak pointsof theresponse

— |AE: Integral of the Absolute Error IAE
N N,
IAE = () |e(t)| ot e
— |ISE: Integral of the SquareError 0
\¥ ) (a) Load change
ISE= Q) [e(t)] dt 0
« Largeerror contributesmore e
e« Small error contributesless 0 Time

(b) Set-point change

» Largepenalty for large over shoot
» Small penalty for small persisting oscillation
— |ITAE: Integral of the Time-weighted Absolute Error

ITAE = () t]e(t) o

o Largepenalty for persisting oscillation

e Small penalty for initial transient response _ _
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« Controller design relation based on ITAE for
FOPDT model

Table 12.3 Controller Design Relations Based on the ITAE Performance Index and a First-
Order plus Time-Delay Model [6-8]*

Type of Input Type of Controller Mode A B
Load PI P 0.859 -0.977
I 0.674 —0.680
Load PID P 1.357 —0.947
I 0.842 —-0.738
D 0.381 0.995
Set point PI P 0.586 —-0.916
I 1.03b —0.165"°
Set point PID P 0.965 —0.85
I 0.796° —0.1465°
D 0.308 0.929

“Design relation: ¥ = A(8/7)® where Y = KK, for the proportional mode, 7/1, for the integral mode,
and 7p/t for the derivative mode.
*For set-point changes, the design relation for the integral mode is 7/7, = 4 + B(o/1). [8]

« Similar design relations based on IAE and ISE for
other types of models can be found in literatures.
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« Examplel

G(s)

_10¢e®
2s+1
KK. =(0.859)(1/2) **"" =1.69

P K:=0.169

t /t, =(0.674)(1/ 2)'0'680 =1.08
Pt =185

Method K, t
IAE 0.195 2.02
ISE 0.245 2.44

ITAE 0.169 1.85
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Example2
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relations based on process react

e processeswho have sigmoidal shapestep r
for underdamped processes)

curvewith FOPDT model
Ke 9°

(ts+)

Table 13.3 Ziegler-Nichols Tuning Relations (Process Reaction Curve Method)

S=KDu/t S =S/Du

Controller Type K, T T

1

P 0S* T o
0.9
3.330
PI 9S*
1.2
2
PID o5 9

imple
tsall theproblemsof FOPDT mode fitting
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DIRECT SYNTHESISMETHOD

 Analysis: Given G(s), what is y(t)?
 Design: Given y4t), what should G(s) be?
e Derivation

Let G, =K.G.G.G 2GG

m>=c=v>=p

Y6 _ G _ GG , ,_laYIR¢
R(s 1+G, 1+GG ° G&l- Y/Rg
lee (Y/R), C

Ggl' (Y/R)d,g

Specify (Y/R), b G, =

— If (YR, =1, then it implies perfect control. (infinitegain)
— Theresulting controller may not be physically realizable

— Or, not in PID form and too complicated.

— Designwith finitesettlingtime: (v/R), =

t.s+1
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« Examples
1. Perfect control (K. becomesinfinite)

K
G(s) = and (Y/R), =1
) t, s+ ,s+1) (Y/R).
1 el 0 _
G.(s) = (infinite gain, unrealizable)

G(s) &1-15 G(s)

2. Finite settling timefor 1s-order process

| L i
6O = oy X9 /R il
B - ael/(t StD O _ts+l_ t o SIGHES

G(s) &l-1/¢t s+l gy Kt.s t K8 tsy

3. Finite settling timefor 2"d-order process
G(s) = X and (Y/R), = .
(t, s+ ,s+] t.s+1

il :
g, 1 ., U, Opp

(t, +
K s Gty
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* Process with time delay

— |fthereisatimedelay, any physically realizable controller
cannot overcomethetimedelay. (Need timelead)

— Given circumstance, ar easonablechoicewill be

g
Y/IR), =
( )d t s+1
— Examples -
e
1. G(s)= and (Y/R)4 = ¢ = Physically
e (t s+1) (Y /R t s+l @ =a) realizable
gs
G.(5) = 1 88e /It .;s+1) O _ts+l | (not aPID)
G(s) e1 e /(t s+1)(,J K [t.stl-e™®

2. With 1%-order Taylor seriesapprox. (e‘qs »1- gS)

ts+1 1 t
= = =2 (P
%O = T s K(tc+q)8+tsQ;()
3. G(s) = Ke™ and (Y/R) : Shi @, =q)
t s+t ,s+1) “ts+l ©
G()—(t S+t ,s+1) 1 (@, +t2)a?[ 1 A tt, _(PID)
K t.+a)s K.+q)& .+ ,)s (t1+t2) 2
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« Observations on Direct Synthesis Method

— Resulting controllerscould be quite complex and may not even
bephysically realizable.

— PID parameter swill bedecided by a user-specified parameter :
Thedesired closed-loop time constant (1 )

— Theshorter t makesthe action moreaggressive. (larger K)

— Thelonger t makesthe action more conservative. (Smaller K.

— For alimited cases, it resultsPID form.
o 1st-order model without time delay: PI
e FOPDT with 1s--order Taylor seriesapprox.: Pl
o 27d-order model without time delay: PID
« SOPDT with 1st-order Taylor seriesapprox.. PID

» Delay modifiesthe K..

t ® t (1st order) (L) ® (. Ao (2nd order)

Kt., K(.+q) Kt . K. +q)

« With time delay, the K, will not become infinite even for the
perfect control (Y/R=1).
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INTERNAL MODEL CONTROL (IMC)

e Motivation

— Theresulting controller from direct synthesis method may not
bephysically unrealizable.

— If thereisRHP zeroin the process, theresulting controller
from direct synthesismethod will be unstable.

— Unmeasured disturbance and modeling error arenot
considered in direct synthesismethod.

e Source of trouble
— Fromdirect synthesismethod

1lee (Y/R)d C Resulting controller may have

. higher-order numerator than

GC 9 =
eré' (Y/R)d " denominator

Direct inversion of process _
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 IMC

— Feedback theerror between the processoutput and model
output.

— Equivalent conventional controller: G. = G _
1- GG

— Using block diagram algebra ) |
C=GP+L P=GE E=R-(C-C)=R- C+GP

P=G(R- C+GP) :
b P=G(R-C)/(1-GG) ,%9_, 6. = o é
C — GG; ( R' C) /(1' Gc*é) + L {a) Classical feedback control
(1+GG: - G:G)C =GG:R+(1- G:G)L e é
GG 1- G:G) L )
= - — R+ " — L ~ e
1+ G (G- G) 1+G. (G- G) ] “"’®

(b) Internal Model Control

If G=G,C =G:GR+(1- G:G)L
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« |IMC design strategy
— Factor theprocessmodel as

G~ =G:G
« G: contains any time delays and RHP zeros and is specified so
that the steady-state gain isone

« G. istherest of G.
— Thecontroller isspecified as

« 1
Gc - —= f
G.
o [MC filter f isalow-passfilter with steady-state gain of one
e Typical IMC filter: f 1

B (tes+l)'

e Thelcisthedesired closed-loop time constant and parameter r is
a positive integer that is selected so that the order of numerator of
G, issame asthe order of denominator or exceeds the order of
denominator by one.
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le
T model with 1/1 Pade approximation

K(1-qgs/2)
(1+gs/2)(t s+1)

1-gs/2 G = A
(1+gs/2)(t s+1)

if _(I+gs/2(ts+1]) 1

G. K (t cs+1)

G _(1+gs/2)ts+1)
1- GGG K(tc+qg/2)s

1t +q/2
K tc+q/2)

(PID)

_tg/2
t +q/2

ti =t +q/2 to
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C based PID controller settin

Table 12.1 IMC-Based PID Controller Settings for G.(s) [4]®
Case Model K.K
A s z
75 + 1 Te
K T1 + T2
B (15 + D(ms + 1) . m ot
c K 2
1252 + 2lrs + 1 T,
K(—Bs + 1) 20T
>
D 1-232+2§-rs+1’B 0 T + B
K 1
E — —
) Te
K 1
F s(ts + 1) 'r—c

“Based on Eq. 12-30 with r = 1.
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COMPARISON OF CONTROLLER DESIGN

RELATIONS

Pl controller settings for different methods

G(S)

2e ©

(c) Cohen-Coon
(d) ITAE {load)

I I |
No modeling error

-1.0F -]
15§ | 1 | | ]
0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time
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7. = 0.0) {c) Cohen-Coon
7. = 0.8) (d) ITAE (load)

T T Lo T .
50% error in process gain

2.5 5.0 7.5 10.0 12.5 15.0

Time
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FECT OF MODELING ERR

20 T | —T T
lant B e
. 1.5 = == = |TAE (set point) T
ze c 10
Os+1)(5s+1)
0.5
. model
-4.7¢
e
1.0 T T T T
< + 1 Loee ZPNAE Goad)
/ -~ = == == |TAE (set point)
o 0.5 ]
ctory for thiscase S~
c \\\\
ith care ==
As the estimated time delay
gets smaller, the performance ~05, L L L e =
degradation willbe pronounced. Time

s of tuning method should be us
etting and fine tuning should be
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GENERAL CONCLUSION FOR PID TUNING

« Thecontrollergainshouldbeinversely proportional to the
products of the other gains in the feedback loop.

e Thecontroller gain should decrease as the ratio of time
delay to dominant time constantincreases.

« Thelargertheratio of time delay to dominant time constant
IS, the harder the system is to control.

* Theresettimeandthederivativetime shouldincrease as
theratio of time delay to dominant time constant increases.

» Theratio between derivativetime and reset timeis typically
between 0.1to 0.3.

 The¥% decayratioistoo oscillatory for process control. If
less oscillatory responseis desired, the controller gain
should decrease and reset time should increase.

« Among IAE, ISE and ITAE, ITAE is the most conservative
and ISE is the least conservative setting.
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