CHE302 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING

Professor Dae Ryook Yang

Fall 2001

Dept. of Chemical and Biological Engineering Korea University

CHE302 Process Dynamics and Control

CONTROLLER DESIGN

- Performance criteria for closed-loop systems
 - Stable
 - Minimal effect of disturbance
 - Rapid, smooth response to set point change
 - No offset
 - No excessive control action
 - Robust to plant-model mismatch

$$\min_{K_c, \boldsymbol{t}_I, \boldsymbol{t}_D} \int_0^\infty (w_1 e^2(\boldsymbol{t}) + w_2 \Delta u^2(\boldsymbol{t})) d\boldsymbol{t}$$

• Trade-offs in control problems

- Set point tracking vs. disturbance rejection
- Robustness vs. performance

CHE302 Process Dynamics and Control

GUIDELINES FOR COMMON CONTROL LOOPS

• Flow and liquid pressure control

- Fast response with no time delay
- Usually with small high-frequency noise
- PI controller with intermediate controller gain

• Liquid level control

- Noisy due to splashing and turbulence
- High gain PI controller for integrating process
- Conservative setting for averaging control when it is used for damping the fluctuation of the inlet stream

Gas pressure control

- Usually fast and self regulating
- PI controller with small integral action (large reset time)

Temperature control

- Wide variety of the process nature
- Usually slow response with time delay
- Use PID controller to speed up the response

Composition control

- Similar to temperature control usually with larger noise and more time delay
- Effectiveness of derivative action is limited
- Temperature and composition controls are the prime candidates for advance control strategies due to its importance and difficulty of control

TRIAL AND ERROR TUNING

• Step1: With P-only controller

- Start with low K_c value and increase it until the response has a sustained oscillation (continuous cycling) for a small set point or load change. (K_{cu})
- **Set** $K_c = K_{cu}$.

Step2: Add I mode

- Decrease the reset time until sustained oscillation occurs. (t_{Iu})
- $\operatorname{Set} \boldsymbol{t}_{I} = 3\boldsymbol{t}_{Iu}$
- If a further improvement is required, proceed to Step 3.
- Step3: Add D mode
 - Decrease the reset time until sustained oscillation occurs. (t_{Du})

- Set
$$\boldsymbol{t}_D = 3\boldsymbol{t}_{Du}$$
.

(The sustained oscillation should not be cause by the controller saturation)

CONTINUOUS CYCLING METHOD

- Also called as loop tuning or ultimate gain method
 - Increase controller gain until sustained oscillation
 - Find ultimate gain (K_{CU}) and ultimate period (P_{CU})
- Ziegler-Nichols controller setting
 - ¼ decay ratio (too much oscillatory)

Controller	K _C	t_{I}	$t_{\scriptscriptstyle D}$
Р	$0.5K_{CU}$	-	-
PI	$0.45 K_{CU}$	<i>P_{CU}</i> /1.2	-
PID	$0.6K_{CU}$	P _{CU} /2	$0.5 P_{CU}^{2}/8$

Modified Ziegler-Nichols setting

Controller	K _C	t_{I}	t_{D}	
Original	$0.6 K_{CU}$	$P_{CU}/2$	P _{CU} /8	
Someovershoot	$0.33 K_{CU}$	$P_{CU}/2$	<i>P_{CU}</i> /3	
No overshoot	$0.2 K_{CU}$	$P_{CU}/2$	<i>P_{CU}</i> /3	

CHE302 Process Dynamics and Control

• Examples

$$G_p(s) = \frac{4e^{-3.5s}}{7s+1}$$
 $K_{CU} = 0.95$
 $P_{CU} = 12$

Controller	K _C	t ₁	t_{D}
Original	0.57	6.0	1.5
Someovershoot	0.31	6.0	4.0
No overshoot	0.19	6.0	4.0

CHE302 Process Dynamics and Control

$$G_p(s) = \frac{2e^{-s}}{(10s+1)(5s+1)} \quad K_{CU} = 7.88$$

 $P_{CU} = 11.6$

Controller	K _C	t_{I}	t_{D}
Original	4.73	5.8	1.45
Someovershoot	2.60	5.8	3.87
No overshoot	1.58	5.8	3.87

11-7

Advantages of continuous cycling method

- No a priori information on process required
- Applicable to all stable processes
- Disadvantages of continuous cycling method
 - Time consuming
 - Loss of product quality and productivity during the tests
 - Continuous cycling may cause the violation of process limitation and safety hazards
 - Not applicable to open-loop unstable process
 - First-order and second-order process without time delay will not oscillate even with very large controller gain

=> Motivates Relay feedback method. (Astrom and Wittenmark)

RELAY FEEDBACK METHOD

Relay feedback controller

- Forces the system to oscillate by a relay controller
- Require a single closed-loop experiment to find the ultimate frequency information
- No *a priori* information on process is required
- Switch relay feedback controller for tuning
- Find P_{CU} and calculate K_{CU}

$$K_{CU} = \frac{4d}{\boldsymbol{p}a}$$

- User specified parameter: d

Decide *d* **in order not to perturb the system too much.**

Controller

Output

- Use Ziegler-Nichols Tuning rules for PID tuning parameters

DESIGN RELATIONS FOR PID CONTROLLERS

- Cohen-Coon controller design relations
 - Empirical relation for ¹/₄ decay ratio for FOPDT model

Controller	Settings	Cohen–Coon
Р	K _c	$\frac{1}{K}\frac{\tau}{\theta}\left[1 + \frac{\theta}{3\tau}\right]$
PI	K _c	$\frac{1}{K}\frac{\tau}{\theta}\left[0.9 + \theta/12\tau\right]$
	$ au_I$	$\frac{\theta[30 + 3(\theta/\tau)]}{9 + 20(\theta/\tau)}$
PID	K _c	$\frac{1}{K}\frac{\tau}{\theta}\left[\frac{16\tau+3\theta}{12\tau}\right]$
	$ au_{I}$	$\frac{\theta[32 + 6(\theta/\tau)]}{13 + 8(\theta/\tau)}$
	۳ _D	$\frac{4\theta}{11 + 2(\theta/\tau)}$

 Table 12.2
 Cohen and Coon Controller Design Relations

CHE302 Process Dynamics and Control

• Design relations based on integral error criteria

- ¹/₄ decay ratio is too oscillatory
- Decay ratio concerns only two peak points of the response
- IAE: Integral of the Absolute Error

 $IAE = \int_0^\infty \left| e(t) \right| dt$

- ISE: Integral of the Square Error

 $\text{ISE} = \int_0^\infty \left[e(t) \right]^2 dt$

- Large error contributes more
- Small error contributes less
- Large penalty for large overshoot
- Small penalty for small persisting oscillation
- ITAE: Integral of the Time-weighted Absolute Error

$$\text{ITAE} = \int_0^\infty t \left| e(t) \right| dt$$

- Large penalty for persisting oscillation
- Small penalty for initial transient response CHE302 Process Dynamics and Control

Controller design relation based on ITAE for FOPDT model

Type of Input	Type of Controller	Mode	Α	В
Load	PI	Р	0.859	-0.977
		Ι	0.674	-0.680
Load	PID	Р	1.357	-0.947
		Ι	0.842	-0.738
		D	0.381	0.995
Set point	PI	Р	0.586	-0.916
		I	1.03 ^b	-0.165^{b}
Set point	PID	Р	0.965	-0.85
		Ι	0.796 ^b	-0.1465 ^b
		D	0.308	0.929

 Table 12.3
 Controller Design Relations Based on the ITAE Performance Index and a First-Order plus Time-Delay Model [6–8]^a

^aDesign relation: $Y = A(\theta/\tau)^B$ where $Y = KK_c$ for the proportional mode, τ/τ_I for the integral mode, and τ_D/τ for the derivative mode.

^bFor set-point changes, the design relation for the integral mode is $\tau/\tau_I = A + B(\theta/\tau)$. [8]

• Similar design relations based on IAE and ISE for other types of models can be found in literatures.

CHE302 Process Dynamics and Control

• Example1

$$G(s) = \frac{10e^{-s}}{2s+1}$$

$$KK_c = (0.859)(1/2)^{-0.977} = 1.69$$

$$\Rightarrow K_c = 0.169$$

$$t / t_I = (0.674)(1/2)^{-0.680} = 1.08$$

$$\Rightarrow t_I = 1.85$$

Method	K _c	\boldsymbol{t}_{I}
IAE	0.195	2.02
ISE	0.245	2.44
ITAE	0.169	1.85

CHE302 Process Dynamics and Control

Example2

• Design relations based on process reaction curve

- For the processes who have sigmoidal shape step responses (Not for underdamped processes)
- Fit the curve with FOPDT model

$$G(s) = \frac{Ke^{-qs}}{(ts+1)} \qquad S = K\Delta u / t \qquad S^* = S / \Delta u = K / t$$

Table 13.3 Ziegler-Nichols Tuning Relations (Process Reaction Curve Method)

Controller Type	K _c	τ,	τ _D	
Р	$\frac{1}{\theta S^*}$			
PI	$\frac{0.9}{\theta S^*}$	3.33θ		
PID	$\frac{1.2}{\theta S^*}$	20	0.5 0	

– Very simple

- Inherits all the problems of FOPDT model fitting

DIRECT SYNTHESIS METHOD

- Analysis: Given $G_c(s)$, what is y(t)?
- Design: Given $y_d(t)$, what should $G_c(s)$ be?
- Derivation

Let
$$G_{OL} = K_m G_c G_v G_p \triangleq G_c G$$

 $\frac{Y(s)}{R(s)} = \frac{G_{OL}}{1 + G_{OL}} = \frac{G_c G}{1 + G_c G} \implies G_c = \frac{1}{G} \left(\frac{Y/R}{1 - Y/R} \right)$
Specify $(Y/R)_d \implies G_c = \frac{1}{G} \left(\frac{(Y/R)_d}{1 - (Y/R)_d} \right)$

- If $(Y/R)_d = 1$, then it implies perfect control. (infinite gain)
- The resulting controller may not be physically realizable
- Or, not in PID form and too complicated.
- Design with finite settling time: $(Y/R)_d = \frac{1}{t_c s + 1}$

CHE302 Process Dynamics and Control

• Examples

1. Perfect control $(K_c \text{ becomes infinite})$

$$G(s) = \frac{K}{(t_1 s + 1)(t_2 s + 1)} \text{ and } (Y/R)_d = 1$$
$$G_c(s) = \frac{1}{G(s)} \left(\frac{1}{1 - 1}\right) = \frac{\infty}{G(s)} \text{ (infinite gain, unrealizable)}$$

2. Finite settling time for 1st-order process

$$G(s) = \frac{K}{(ts+1)} \text{ and } (Y/R)_d = \frac{1}{t_c s + 1}$$
$$G_c(s) = \frac{1}{G(s)} \left(\frac{1/(t_c s + 1)}{1 - 1/(t_c s + 1)} \right) = \frac{ts+1}{Kt_c s} = \frac{t}{t_c K} \left(1 + \frac{1}{ts} \right) (\text{PI})$$

3. Finite settling time for 2nd-order process

$$G(s) = \frac{K}{(t_1 s + 1)(t_2 s + 1)} \text{ and } (Y/R)_d = \frac{1}{t_c s + 1}$$
$$G_c(s) = \frac{(t_1 + t_2)}{t_c K} \left(1 + \frac{1}{(t_1 + t_2)s} + \frac{t_1 t_2}{(t_1 + t_2)s} s \right) \text{(PID)}$$

CHE302 Process Dynamics and Control

• Process with time delay

- If there is a time delay, any physically realizable controller cannot overcome the time delay. (Need time lead)
- Given circumstance, a reasonable choice will be

$$\left(Y/R\right)_{d} = \frac{e^{-\boldsymbol{q}_{c}\boldsymbol{s}}}{\boldsymbol{t}_{c}\boldsymbol{s}+1}$$

- Examples
1.
$$G(s) = \frac{Ke^{-qs}}{(ts+1)}$$
 and $(Y/R)_d = \frac{e^{-qs}}{t_cs+1}$ $(q_c = q)$ Physically realizable
 $G_c(s) = \frac{1}{G(s)} \left(\frac{e^{-qs}/(t_cs+1)}{1 - e^{-qs}/(t_cs+1)} \right) = \frac{ts+1}{K} \frac{1}{t_cs+1 - e^{-qs}}$ (not a PID)
2. With 1st-order Taylor series approx. $(e^{-qs} \approx 1 - qs)$
 $G_c(s) = \frac{ts+1}{K} \frac{1}{(t_c + q)s} = \frac{t}{K(t_c + q)} \left(1 + \frac{1}{ts} \right)$ (PI)
3. $G(s) = \frac{Ke^{-qs}}{(t_1s+1)(t_2s+1)}$ and $(Y/R)_d = \frac{e^{-qs}}{t_cs+1}$ $(q_c = q)$
 $G_c(s) = \frac{(t_1s+1)(t_2s+1)}{K} \frac{1}{(t_c + q)s} = \frac{(t_1 + t_2)}{K(t_c + q)} \left(1 + \frac{1}{(t_1 + t_2)s} + \frac{t_1t_2}{(t_1 + t_2)}s \right)$ (PID)
CHE302 Process Dynamics and Control

• Observations on Direct Synthesis Method

- Resulting controllers could be quite complex and may not even be physically realizable.
- PID parameters will be decided by a user-specified parameter: The desired closed-loop time constant (t_c)
- The shorter t_c makes the action more aggressive. (larger K_c)
- The longer t_c makes the action more conservative. (smaller K_c)
- For a limited cases, it results PID form.
 - 1st-order model without time delay: PI
 - FOPDT with 1st-order Taylor series approx.: PI
 - 2nd-order model without time delay: PID
 - SOPDT with 1st-order Taylor series approx.: PID
 - **Delay modifies the** K_c .

$$\frac{t}{Kt_c} \rightarrow \frac{t}{K(t_c + q)} \text{ (1st order)} \qquad \frac{(t_1 + t_2)}{Kt_c} \rightarrow \frac{(t_1 + t_2)}{K(t_c + q)} \text{ (2nd order)}$$

• With time delay, the K_c will not become infinite even for the perfect control (Y/R=1).

INTERNAL MODEL CONTROL (IMC)

Motivation

- The resulting controller from direct synthesis method may not be physically unrealizable.
- If there is RHP zero in the process, the resulting controller from direct synthesis method will be unstable.
- Unmeasured disturbance and modeling error are not considered in direct synthesis method.

Source of trouble

From direct synthesis method

- IMC
 - Feedback the error between the process output and model output.
 - Equivalent conventional controller: $G_c = \frac{G_c^*}{1 G^* \tilde{G}}$

- Using block diagram algebra

$$C = GP + L \quad P = G_c^*E \quad E = R - (C - \tilde{C}) = R - C + \tilde{G}P$$

$$P = G_c^*(R - C + \tilde{G}P)$$

$$\Rightarrow \quad P = G_c^*(R - C) / (1 - G_c^*\tilde{G})$$

$$C = GG_c^*(R - C) / (1 - G_c^*\tilde{G}) + L$$

$$(1 + GG_c^* - G_c^*\tilde{G})C = GG_c^*R + (1 - G_c^*\tilde{G})L$$

$$C = \frac{G_c^*G}{1 + G_c^*(G - \tilde{G})}R + \frac{(1 - G_c^*\tilde{G})}{1 + G_c^*(G - \tilde{G})}L$$
If $\tilde{G} = G, C = G_c^*GR + (1 - G_c^*G)L$

CHE302 Process Dynamics and Control

- IMC design strategy
 - Factor the process model as

$$\tilde{G} = \tilde{G}_{+} \tilde{G}_{-}$$
 Uninvertibles

- G_+ contains any time delays and RHP zeros and is specified so that the steady-state gain is one
- \tilde{G}_{-} is the rest of *G*.
- The controller is specified as

$$G_c^* = \frac{1}{\tilde{G}_-} f$$

- IMC filter f is a low-pass filter with steady-state gain of one
- Typical IMC filter: $f = \frac{1}{(\boldsymbol{t}_c s + 1)^r}$
- The t_c is the desired closed-loop time constant and parameter r is a positive integer that is selected so that the order of numerator of G_c^* is same as the order of denominator or exceeds the order of denominator by one.

CHE302 Process Dynamics and Control

• Example

- FOPDT model with 1/1 Pade approximation

$$\tilde{G} = \frac{K(1 - qs/2)}{(1 + qs/2)(ts+1)}$$

$$\tilde{G}_{+} = 1 - qs/2 \qquad \tilde{G}_{-} = \frac{K}{(1 + qs/2)(ts+1)}$$

$$G_{c}^{*} = \frac{1}{\tilde{G}_{-}} f = \frac{(1 + qs/2)(ts+1)}{K} \frac{1}{(t_{c}s+1)}$$

$$G_{c} = \frac{G_{c}^{*}}{1 - G_{c}^{*}\tilde{G}} = \frac{(1 + qs/2)(ts+1)}{K(t_{c} + q/2)s} \quad \text{(PID)}$$

$$K_{c} = \frac{1}{K} \frac{(t + q/2)}{(t_{c} + q/2)} \qquad t_{I} = t + q/2 \qquad t_{D} = \frac{tq/2}{t + q/2}$$

CHE302 Process Dynamics and Control

IMC based PID controller settings

Case	Model	K _c K	τ_I	$ au_D$
A	$\frac{K}{\tau s + 1}$	$\frac{\tau}{\tau_c}$	т	
В	$\frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}$	$\frac{\tau_1 + \tau_2}{\tau_c}$	$\tau_1 + \tau_2$	$\frac{\tau_1\tau_2}{\tau_1+\tau_2}$
С	$\frac{K}{\tau^2 s^2 + 2\zeta \tau s + 1}$	$\frac{2\zeta\tau}{\tau_c}$	2ζτ	$\frac{\tau}{2\zeta}$
D	$\frac{K(-\beta s + 1)}{\tau^2 s^2 + 2\zeta \tau s + 1}, \beta > 0$	$\frac{2\zeta\tau}{\tau_c + \beta}$	2ζτ	$\frac{\tau}{2\zeta}$
Е	$\frac{K}{s}$	$\frac{1}{\tau_c}$		—
F	$\frac{K}{s(\tau s + 1)}$	$\frac{1}{\tau_c}$		τ

Table 12.1 IMC-Based PID Controller Settings for $G_c(s)$ [4]^a

^aBased on Eq. 12-30 with r = 1.

CHE302 Process Dynamics and Control

COMPARISON OF CONTROLLER DESIGN RELATIONS

PI controller settings for different methods

 $G(s) = \frac{2e^{-s}}{s+1}$

EFFECT OF MODELING ERROR

Actual plant

$$G(s) = \frac{2e^{-s}}{(10s+1)(5s+1)}$$

• Approx. model

$$\tilde{G}(s) = \frac{2e^{-4.7s}}{12s+1}$$

- Satisfactory for this case
- Use with care

As the estimated time delay gets smaller, the performance degradation will be pronounced.

• All kinds of tuning method should be used for initial setting and fine tuning should be done!!

CHE302 Process Dynamics and Control

GENERAL CONCLUSION FOR PID TUNING

- The controller gain should be inversely proportional to the products of the other gains in the feedback loop.
- The controller gain should decrease as the ratio of time delay to dominant time constant increases.
- The larger the ratio of time delay to dominant time constant is, the harder the system is to control.
- The reset time and the derivative time should increase as the ratio of time delay to dominant time constant increases.
- The ratio between derivative time and reset time is typically between 0.1 to 0.3.
- The ¼ decay ratio is too oscillatory for process control. If less oscillatory response is desired, the controller gain should decrease and reset time should increase.
- Among IAE, ISE and ITAE, ITAE is the most conservative and ISE is the least conservative setting.

CHE302 Process Dynamics and Control