CHE302 LECTURE II MEASUREMENT, TRANSMITTERS AND FILTERING

Professor Dae Ryook Yang

Fall 2001
Dept. of Chemical and Biological Engineering
Korea University

INTRODUCTION TO SENSOR

What is Sensor?

 Sensor converts the physical quantity to signal that can be recognized by other components such as display, transmitter and etc.

Sensor types

- Temperature: thermocouple, RTD, thermister
- Pressure: bellows, bourdon tube, diaphragm
- Flow rate: orifice, venturi, magnetic, ultrasonic, Coliolis effect
- Liquid level: float, differential pressure
- pH: pH electrode
- Viscosity: pressure drop across venturi or vane deflection
- Composition: density, conductivity, GC, IR, NIR, UV

MEASUREMENT DEVICE

Transducer: Sensor+Transmitter

- Transmitter generates an industrial standard signal from the sensor output.
- Standard instrumentation signal levels
 - Voltage: 1~5VDC, 0~5VDC, -10~+10VDC, etc.
 - Current: 4~20mA (long range transmission with driver)
 - Pneumatic: 3-15psig
- Signal conversion
 - I/P or P/I transducer: current-to-pressure or vice versa
 - I/V (I/E) or V/I: current-to-voltage or vice versa
 - P/E or E/P: pressure-to-voltage or vice versa

Analog-to-Digital (A/D) converter

- Continuous signal converted to digital signal after sampling
- Specification: sample rate, resolution (8bit, 12bit, 16bit)

TRANSMITTERS

- Transmitter Gain (K_m): adjustable
 - Amplification ratio: (output span)/(input span)
- Span and Zero: adjustable
 - Span: magnitude of range of transmitter signal
 - Zero: lower limit of transmitter signal

Ex) Temp. Transmitter

$$K_{m} = \frac{(20mA - 4mA)}{(150^{\circ}C - 50^{\circ}C)} = 0.16[mA/^{\circ}C]$$

$$span=100^{\circ}C$$

$$zero=50^{\circ}C$$

Other functions: square-root extractor, ...

TEMPERATURE SENSORS

Principle	Туре	Usable range (°C)	Remarks
Thermal Expansion	Gas expansion Liquid Bimetal	-230~600 -200~350 -50~500	N2 Oil
Resistance	Pt-100 Thermistor	-200~500 <300	Accurate, linear, self heating Cheap, inaccurate, nonlinear
EMF	Thermocouple	-200~1600	Low sensitivity
	IC temp. sensor	-100~150	High voltage, accurate, linear
Radiation	Pyrometer	Very wide	Noncontacting, need accurate calibration

Temperature Sensor Attributes				
Criteria	Thermocouple	RTD	Thermistor	
Cost-OEM Quality	Low	High	Low	
Temperature Range	Very wide Wide -450°F -400°F +4200°F +1200°F		Shot to medium -100°F +500°F	
Interchangeability	Good	Excellent	Poor to fair	
Long-term Stability	Poor to fair	Good	Poor	
Accuracy	Medium	High	Medium	
Repeatability	Poor to fair	Excellent	Fair to good	
Sensitivity (output)	Low	Medium	Very high	
Response	Medium to fast	Medium	Medium to fast	
Linearity	Fair	Good	Poor	
Self Heating	No	Very low to low	High	
Point (end) Sensitive	Excellent	Fair	Good	
Lead Effect	High	Medium	Low	
Size/Packaging	Small to large	Medium to small	Small to medium	

Temperature Sensor Advantages/Disadvantages				
Sensor	Advantages	Disadvantages		
Thermocouple	 Self-powered Simple Rugged Inexpensive Wide variety Wide range 	•Non-linear •Low voltage •Reference required •Least stable •Least sensitive		
RTD	Most stable Most accurate More linear than thermocouple	 Expensive Current source required Small △ Low absolute resistance Self heating 		
Thermistor	High outputFastTwo-wire ohms measurement	 Non-linear Limited range Fragile Current source required Self heating 		
Infrared	 No contact required Very fast response time Good stability over time High repeatability No oxidation/corrosion to affect sensor 	High initial cost More complex/support electronics Spot size restricts application Emissivity variations affect readings Accuracy affected by dust, smoke and background radiation		

THERMOCOUPLE

Thermocouple Types

- Chromel- alumel (K- type): most popularly used
- Iron- constantan (J- type): higher electromotive force (emf)
- Chromel- constantan (E- Type): cryogenic temperature
- 13% Rh. Pt Pt (R- type): high temperature (> 900°C)
- Typical emf is about 0.041mV/°C for K type
 - Needs signal amplification
- Ice point can be a ice bath or an electronic device to compensate the ambient temperature.

Thermocouple type	Overall Range (°C)	EMF (mV/ °C)	
B (Platinum / Rhodium)	100~1800	0.01	
E (Chromel / Constantan)	-270~790	0.068	
J (Iron / Constantan)	-210~1050	0.054	
K (Chromel / Alumel)	-270~1370	0.041	
N (Nicrosil / Nisil)	-260~1300	0.038	
R (Platinum / Rhodium)	-50~1760	0.01	
S (Platinum / Rhodium)	-50~1760	0.01	
T (Copper / Constantan)	-270~400	0.054	

- B,R,S: high temp. low sensitivity, high cost
- S: very stable, use as the standard of calibration for the melting point of gold (1064.43°C).
- N: improved type K, getting more popular
- T: cryogenic use
- Ref: http://www.watlow.com/reference/refdata/TOP
 http://www.picotech.com/applications/thermocouple.html

FLOW MEASUREMENT (1)

Differential Pressure Cell

$$Q = \frac{C_d A_2}{\sqrt{1 - \left(A_2 / A_1\right)^2}} \sqrt{\frac{2g_c \Delta P}{r}}$$

- ΔP : Delta P across the orifice
- A_1 : area of flow pipe
- A₂: area of orifice
- C_d: orifice coefficient
- Maximum pressure drop should be < 4% of the total line pressure
- Selection of orifice size and delta P range is very important for the reading precision

FLOW MEASUREMENT(2)

Vortex Flow Meter

- The vortices create low and high pressure zones behind the bluff body.
- The vortex meter uses a piezoelectric crystal sensor to detect the pressure exerted by the vortices on the sensing wing.
- The piezoelectric crystal converts this vortex shedding frequency into electrical signals.

Electromagnetic Flow Meter

 Electrically conducting fluid passing through a magnetic field created by the device.

CORIOLIS FLOWMETER (3)

- Flow rate is measured by Coriolis effect (1835)
- Mass flowrate, vol. flowrate, temp. and density are simultaneously measured.

http://www.emersonprocess.com/micromotion/tutor/default.html

FLOW MEASUREMENT (4)

- Ultrasonic Flow Meter
 - High accuracy
 - No contact with flow

- Positive Displacement Flow Meter
 - Turbine, gear, wheels
- Thermal Dispersion Flow Meter
 - Flow over heating coil will change temperature

SELECTION OF FLOWMETERS

Requirement	Orifice	Positive displace ment	Vortex	Electro- Magnetic	Acoustic	Coriolis
accuracy	±2~4% of full span	±0.2~0.5% of rate	±1.0% of rate	±0.5% of rate	±1~5% of full span	±0.5% of rate
Press. loss	medium	high	medium	none	none	low
Initial Cost	low	medium	high	high	high	very high
Maintenance cost	high	medium	medium	low	low	low
Application	Clean,dirty liq.; some slurry	Clean viscous liq.	Clean,dirty liq.;	Clean,dirty viscous conductive liq. and slurry	Dirty, viscous liq. and slurry	Clean,dirty viscous liq. and some slurry
Upstream pipe size	10~30	None	10 to 20	5	5 to 30	none
Viscosity effect	high	high	medium	none	none	none
Rangeability	4 to 1	10 to 1	10 to 1	40 to 1	20 to 1	10 to 1

LEVEL MEASUREMENT

OTHER MEASUREMENTS

Composition measurements

- Expensive
- Long time delay
- High to maintenance cost
- Gas Chromatography
- IR, NIR, Raman, UV spectrophotometer
- pH sensor electrode: concentration of [H+]

Secondary Measurements

Density or temp. for binary composition

Soft Sensors

Estimated by a model based on other measurements

FILTERING

Noise Source

- Process nature (turbulence, vibration, oscillation...)
- Various noise source from environment
- Power line, electromagnetic force, etc.

Removing noise

- Analog filter
$$t_F \frac{dy_F}{dt} + y_F = y \longleftarrow \text{Measured output}$$

Filter time constant Filtered output

First-order filter analogy

$$t_F \frac{y_F - y_F - y_F}{\Delta t} + y_F = y$$
 Previous filtered output

$$y_F = ay_F^{0} + (1-a)y$$
 where $a = \frac{t_F/\Delta t}{1 + t_F/\Delta t} (0 < a < 1)$

- The filter behaves as an interpolation between the measured output and previous filtered output.
- If a=1, the measured output is ignored. (constant)
- If a=0, the filtered output is same as the measured output (no filtering)
- If $t_F = 0$, a = 0 and no filtering is achieved.
- If $t_F = Y$, a = 1 and the measured output is ignored.
 - P As t_F increases, heavier filter is applied.

