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THE RATIONALE FOR MATHEMATICAL
MODELING

« Where to use
— Toimprove understanding of the process
— Totrain plant operating personnel
— Todesign the control strategy for a new process
— Toselect thecontroller setting
— Todesign the control law
— To optimize process operating conditions

A Classification of Models
— Theoretical models (based on physicochemical law)
— Empirical models (based on process data analysis)
— Semi-empirical models (combined approach)
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DYNAMIC VERSUS STEADY-STATE MODEL

e Dynamic model
— Describestime behavior of a process
« Changesin input, disturbance, parameters, initial condition, etc.
— Described by a set of differential equations
. ordinary (ODE), partial (PDE), differential-algebraic(DAE)

Initial Condition, x(Ol

Input, u(t) Dynamic Model Output, y()
>  (ODE, PDE) >

Parameter, p(t) 4

o Steady-state model
— Steady state: No further changesin all variables
— No dependency in time: No transient behavior
— Can beobtained by setting thetime derivativeterm zero
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MODELING PRINCIPLES

« Conservation law
— Within a defined system boundary (control volume)
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« Mass balance (overall, components)

« Energy balance

e Momentum or force balance

 Algebraic equations: relationships between
variables and parameters
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MODELING APPROACHES

e Theoretical Model

Follow conservation laws
Based on physicochemical
laws

Variables and parameters
have physical meaning
Difficult to develop

Can become quite complex

Extrapolation isvalid unless
the physicochemical laws are
invalid

Used for optimization and
rigorous prediction of the
process behavior
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« Empirical model

Based on the operation data
Parameter s may not have
physical meaning

Easy to develop

Usually quite smple

Requireswell designed
experimental data

The behavior iscorrect only
around the experimental
condition

Extrapolation is usually
invalid

Used for control design and
simplified prediction model
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DEGREE OF FREEDOM (DOF) ANALYSIS

e DOF
— Number of variablesthat can be specified independently
— N =N, - N¢

* N : Degreeof freedom (no. of independent variables)
* N, : Number of variables
* N : Number of equations (no. of dependent variables)

» Assume no equation can be obtained by a combination of other
equations

e Solution depending on DOF
— If N =0, the system is exactly determined. Unique solution
exists.
— If N > 0, the system is underdetermined. I nfinitely many
solutions exist.
— If Ng <0, the system isoverdetermined. No solutions exist.
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LINEAR VERSUS NONLINEAR MODELS

e Superposition principle
"a,bl A, andfor alinear operator, L
Then L(@a X (t) +bx,(t)) =a L(x(t)) + b L(X,(t))
 Linear dynamic model: superposition principle holds
"a,bl A, y(t)® y,(t) and u,(1) ® Y, (1)
au(t)+bu,(t)® ay,(t)+by,(t)
"a,bl A, x(0)® y,(t) and x,(0) ® y,(t)
a % (0)+bx,(0)® ay,(t)+by,(t)

— Easy to solve and analytical solution exists.
— Usually, locally valid around the oper ating condition
« Nonlinear: “Not linear”
— Usually, hard to solve and analytical solution does not exist.
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STRATION OF SUPERPOSI
PRINCIPLE

U(t .
1.5
> I

ly for linear process
ample, if y(t)=u(t)?,
1.5u,(t))? is not same as u,(t)? +1.5u,(t)>.
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CAL LINEARDYNAMIC M

DE
=-y()+Ku(t) (t andK arecontant, 1st order)
SIS0 ray
U0, MO, v (ot orden
ar ODE
=- y(t)* + Ku(t) dﬁt) y(t) =- y(t)sin(y

- y(t) + K Ju(t) t % =- @+ Ku(t)
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MODELS OF REPRESENTATIVE

PROCESSES
e Liquid storage systems q
— System boundary: storage tank —l
— Massin: g (vol. flow, indep. var)
— Massout: q (vol, flow, dep. var) \/ hI .
— No generation or disappearance Araa A P>

(no reaction or leakage)
No ener gy balance

DOF=2 (h, q) - 1=1 ‘ @: @

If f(h)=h/R,, the ODE islinear. Mass out rate
(h) R, Mase (i Outlet flow is a

(RV Isthe resistance to flow) Accumulatlon rate in tank function of head
Iff(h)=C,./r gh/g, , the ODE isnonlinear.

(C, Isthe valve constant)
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« Continuous Stirred Tank Reactor (CSTR)
— Liquid level is constant (No acc. in tank)

— Constant density, perfect mixing Cair din T
— Reaction: A > B (r = k,exp(-E/RT)c,) / RS
— System boundary: CSTR tank =L g
— Component mass balance V. T h
dc
V—==q(cy - Ca)- Vke,
dt Cooling
— Energy balance medium, T,
dT
Vr Cpa =qr C,(T; - T) +(- DH)Vkc, +UA(T. - T)
— DOF analysis

* No. of variables: 6 (q,Ca, Ca, Ty T, T)

* No. of equation:2 (two dependent vars.: c,, T)

e DOF=6-2=4

* Independent variables: 4 (q, Cy, T, Tp)

 Parameters. kinetic parameters, V, U, A other physical properties
* Disturbances: any of q, ¢y, T;, T, which are not manipulatable
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STANDARD FORM OF MODELS

From the previous example

dc

=8, - 6) - ke, = (0 T.0C,)

_:_“.-T + - DH)kc, + (I -T)="1 C1T’ ch’Ti
R Ve CPke e T = G

p r Y
e State-space model
X =dx/dt =f(x,u,d)
wherex =[x,,---,x.]" ,u=[u,---u ] ,d=[d,---,d]
— X: states, [c, T]T
— u: inputs, [ T]T
— d: disturbances, [c, T]T
— y: outputs— can be a function of above, y=g(x,d,u), [C, T]T
— |f higher order derivatives exist, convert them to 1% order.
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ONVERT TO 1°"-ORDER O

rder ODE
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1st-order ODE's
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SOLUTION OF MODELS

« ODE (state-space model)
— Linear case: find the analytical solution via L aplace transform,
or other methods.
— Nonlinear case: analytical solution usually does not exist.

 Useanumerical integration, such as RK method, by defining
initial condition, time behavior of input/distur bance

* Linearize around the operating condition and find the analytical
solution

e PDE

— Convert to ODE by discretization of spatial variablesusing
finite difference approximation and etc.

1T, m, . 1 dr . (j) _ v . ,. & 16 ... 1

s - (0,-T) —» =- —T(i- - =+

1t 1z tHL ( L) _ _dt Dz gDZ Ly g 1 U
I, »TL(J)'TL(J'l) (j=1---N)
Nz Dz
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LINEARIZATION

« Equilibrium (Steady state)
— Set thederivativesaszero: 0=f(x,u,d)

— Overbar denotesthe steady-statevalueand (X,u,d) isthe
equilibrium point. (could be multiple)

— Solvethem analytically or numerically using Newton method

 Linearization around equilibrium point
— Taylor seriesexpansion to 1% order

ﬂf ﬂf Jacobian
f(x,u)=f,U)+— (X-X)+—| (u-T)+-- e, . Thu
WXl MUl i gﬂxl ﬂxng
— lgnore higher order terms ﬂ—ngi R
; - e . i i e u
— Definedeviation variables: x¢=x- X, ut=u- U el . g
it it gfx X, g

XC=— X+ — ut= Ax¢+ Bu¢
Xlz.q) Ul g
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