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THE RATIONALE FOR MATHEMATICAL
MODELING

« Whereto use
— Toimprove under standing of the process
— Totrain plant operating per sonne
— Todesign the control strategy for a new process
— Tosdect thecontroller setting
— Todesign the control law
— To optimize process oper ating conditions

A Classification of Models

— Theoretical models (based on physicochemical law)
— Empirical models (based on process data analysis)
— Semi-empirical models (combined approach)
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DYNAMIC VERSUSSTEADY-STATE MODEL

« Dynamicmodel
— Describestime behavior of a process
» Changesin input, disturbance, parameters, initial condition, etc.
— Described by a set of differential equations
. ordinary (ODE), partial (PDE), differential-algebraic(DAE)

Initial Condition, x(Ol

Input, u(t) : Dynamic Model Output, y(t)‘
(ODE, PDE) >

Parameter, p(t)

o Steady-state model
— Steady state: No further changesin all variables
— No dependency in time: No transient behavior
— Can be obtained by setting thetime derivativeterm zero
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MODELINGPRINCIPLES

 Conservationlaw
— Within a defined system boundary (control volume)

é raleof U erateofu érate of )
gaccumulatlonu - ginput g eoutputu
é rateof u é rateof (
egeneratlon edlgappreanceg
 Mass balance (overall,components)
 Energy balance
« Momentum or force balance

« Algebraic equations:relationships between
variables and parameters

CHE302 Process Dynamics and Control Korea University

4-4




MODELING APPROACHES

 Theoretical Model  Empirical model

— Follow conservation laws — Based on the operation data

— Based on physicochemical — Parameters may not have
laws physical meaning

— Variables and parameters — Easy todevelop
have physical meaning — Usually quite smple

— Difficult to develop — Requires well designed

— Can become quite complex experimental data

— Extrapolation is valid unless — The behavior is correct only
the physicochemical laws are around the experimental
invalid condition

— Used for optimization and — Extrapolation is usually
rigorous prediction of the invalid
process behavior — Used for control design and

simplified prediction model
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DEGREE OF FREEDOM (DOF) ANALYSIS

e DOF
— Number of variablesthat can be specified independently
— N =N, - N

* Nq: Degree of freedom (no. of independent variables)

* N, : Number of variables

* Ng: Number of equations (no. of dependent variables)

» Assume no equation can be obtained by a combination of other
eguations

« Solutiondepending on DOF

— If Ng =0, thesystem is exactly determined. Unique solution
exists.

— If Ng >0, the system is underdetermined. I nfinitely many
solutions exigt.

— If Ng <0, thesystem is overdetermined. No solutions exist.
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LINEARVERSUSNONLINEAR MODELS

e Superposition principle
"a,bl A, andfor alinear operator, L
Then L(a x (t) +bx,(t)) =aL(x/(t)) +bL(x,(t))

* Linear dynamic model: superposition principle holds
"a,bl A, u()® y(t) and u() ® y,(1)
auy (t)+bu,(t)® ay,(t)+ b y,(1)
"a,bl A, x(0)® y,(t) and x,(0) ® Y,(1)
ax (0)+bx,(0)® ay,(t) +by,(t)

— Easy to solve and analytical solution exists.
— Usually, locally valid around the operating condition

* Nonlinear: “Not linear”
— Usually, hard to solve and analytical solution does not exist.
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ILLUSTRATIONOFSUPERPOSITION
PRINCIPLE
ul(t)A ui(tST S&SA I
1 1
t 1 g 1 o

vt v v

Y1 (t) yz(tT y(t) g

t 1 t 1 t

« Valid only for linear process
— For example, if y(t)=u(t)?
(uy(t)+1.5u,(t))? isnot same as u,(t)? +1.5u,(t)>2
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TYPICAL LINEARDYNAMIC MODEL

 Linear ODE
t % =-y(t)+Ku(t) (t andK arecontant, 1st order)
d"y(t dmt
d{f o, S0, oy
d”‘u 0, d””u t
 Nonlinear ODE
dy(t
t % = (O +Ku() D8 y0)=- ywsin(y) +ku(y
CHE302 Process Dynamics and Control Korea University ~ 4-9
MODELSOF REPRESENTATIVE
PROCESSES
 Liquid storage systems a4 Control
volume
— System boundary: storage tank L/
— Massin: g (vol. flow, indep. var) 1
— Massout: g (vol, flow, dep. var) v h q
— No generation or disappearance A A D>
(noreaction or leakage)
— No energy balance
— DOF=2(h q)-1-1
— Iff(h=n/R,,the ODE islinear. Mass out rate et flow is a

. . Mass in rate
(R, istheresistance to flow) Accumulation rate in tank function of head

— Iff(h=c,frgh/g,, the ODE isnonlinear.
(C, isthe valve congtant)
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» Continuous Stirred Tank Reactor (CSTR)
— Liquid leve is constant (No acc. in tank)

— Consgtant density, perfect mixing Cain Qin T
— Reaction: A> B (r = keexp(-E/RT)c,) / o T
— System boundary: CSTR tank - >
— Component mass balance V, T h

dCA _ m A

\ - q(CAi - A)' VkCA | L

dt Cooling

— Energy balance medium, T,

Vr Cp%:qr C,(T; - T) +(- DH)Vkc, +UA(T, - T)

— DOF analysis
« No.of variables: 6(q,c,, Cy, T;, T, T)
* No.of equation:2 (twodependent vars.: Ca, T)
« DOF=6-2=4
* Independentvariables: 4(q, Cy, Tiy To)
» Parameters:kineticparameters,V, U, Aother physicalproperties
» Disturbances: any of q, cy, T;, T, which arenot manipulatable
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STANDARD FORM OF MODEL S

From the previous example
dc, _ g

dt _V(CAi- Ca) - kep =f1(Ca T,0,Ch)

dT _q q UA T-T T
_:_‘l—T + 'Dl_l kC + - :f C 1T1 ’cs-ri
a v ) GC( e p( DR )

o State-space model
x=dx/dt=f(x,u,d)
wherex =[x,,---,x ]",u =[u,,---,u ] ,d =[d,,---,d ]’
— X: states, [C, T]T
— u:inputs, [ TJT
— d: disturbances, [cy T]"
— y: outputs —can bea function of above, y=g(x,d,u), [c, T]T
— If higher order derivativesexist, convert them to 1% order.
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CONVERT TO 1°"-ORDER ODE

 Higher order ODE

n n-1
LU 0N
 Define new states
X=X X=X K=K e, X =X
e A set of 1st-order ODE’s

... tagx(t) =byu(t)

X =%
X, = X%
Xo == 801Xy = 8y X 1 00 - 8g¥ +hu
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SOLUTION OF MODELS

 ODE (state-space model)
— Linear case: find the analytical solution via L aplace transform,
or other methods.
— Nonlinear case: analytical solution usually does not exist.

* Useanumerical integration, such as RK method, by defining
initial condition, time behavior of input/disturbance

* Linearize around the operating condition and find the analytical
solution

« PDE
— Convert to ODE by discretization of spatial variablesusing
finite difference approximation and etc.

ﬂTL - TlTL 1 dTL(J) Vv . xVv 10 . 1
=-V + -T) —p ———=-=T(-D- c=+—=T . ())+—T,
1t 1z tHL (TW L) _ _dt Dz -9 gDZ lig ) "
m 1)-10-7 (j=1---N)
Iz Dz
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LINEARIZATION

 Equilibrium (Steady state)
— Set thederivativesaszero: 0=f (X 7,d)

— Overbar denotesthe steady-state valueand (X,u,d)isthe
equilibrium point. (could be multiple)

— Solve them analytically or numerically using Newton method
e Linearization around equilibrium point
— Taylor seriesexpansion to 1% or der

ﬂf Jacobian
f(x,u) }7/‘)+_ x-X)+ | (u-T)+--- off, | W
(YU) Ul zm " eﬂX1 ﬂXnE
— Ignorehigher order terms e ge R
— Definedeviation variables; x¢=x- X, ut=u-u g‘ﬂf_n , lb
" ” afx, Tix, @

¢=ﬂ— ¢+ﬂ— ul= Ax¢+Bu¢
Wiz  Mixg
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