Chapter 4. Stereoisomerism

· Polymer configuration – arrangements of atoms which cannot be altered except by

breaking and reforming primary chemical bonds.

- Configuration in vinyl polymers -

i) Atactic – a random arrangement of the unsymmetrical group.

[(e.g.) polypropylene oxide]

Н	Н	ΗН	H CH ₃	ΗН
-0-C	-C-	O - C - C - C	$^{O-C-C-O}$	-C-C-
Н	CH ₃	H CH ₃	нн	$H CH_3$

ii) Isotactic – the structure in which all of the groups are lined up on the same side of the backbone.

e.g.) PPO, i -PP $(T_m = 176 °C)$

iii)Syndiotactic – alterating placement of the group on either side of the chain.

· Configuration - specifies the relative spatial arrangement of bonds in a molecule (of

given constitution) without regard to the changes in molecular shape

which can arise because of rotations about single bonds. A change in

configuration reguires the breaking and reforming of chemical

bonds.

· Conformation - the conformation of a macromolecule of given constitution and

configuration specifies the spatial arrangements of the various atoms

in the molecule that may occur because of rotations about single

bonds.

- vinyl polymer stereoregularity가 가 crystallinity가 가

- no configurational isomers in PE

• Polymer conformation - changes in structure caused by rotation about single bond.

 stereoisomerism in diene polymer ex) polybutadiene,

i) cis-PBD : the substituent groups on the double-sided carbons may either be on the same side.

ii) trans -PBD : the substituent groups on the double -sided carbons may either be on the opposite side.

