Chapter 5. Single-Phase Systems

고려대학교 화공생명공학과

Introduction

Physical properties

 Most important information to construct heat and material balance equations

• How to determine ?

- Look it up from literature
 - Perry's Chemical Engineer's Handbook
 - CRC Handbook
 - NBS Databooks
 - Various Databases
- Estimation
 - "The Properties of Gases and Liquids" (Newest edition)
- Measurement

5.1 Liquid and Solid Densities

- Liquid and Solids \rightarrow Incompressible
 - Changes in T or P does not cause significant changes in liquid and solid densities
- See appendix B.1 for solid and liquid densities
- Additivity :
 - Properties of a mixture can be assumed as the following formula (assumption)

5.2 Ideal Gases

- Densities of gases \rightarrow Sensitive to T and P
- P-V-T relation \rightarrow Equation of State (EOS)
- Ideal Gas Law for Single Component
 - \bullet **PV** = **nRT**
- Ideal Gas Law for mixtures

$$p_{A}V = n_{A}RT$$

$$\frac{p_{A}}{P} = \frac{n_{A}}{n} = y_{A} \qquad \rightarrow p_{A} = y_{A}P$$

$$Pv_{A} = n_{A}RT$$

$$\frac{v_{A}}{V} = \frac{n_{A}}{n} = y_{A} \qquad \rightarrow v_{A} = y_{A}V$$

Mole Fraction = Volume Fraction = Partial Pressure Fraction

Standard conditions

Standard conditions can be conveniently used calculate the PVT relations at the other condition. $\underline{PV} = \underline{nT}$

 P_sV_s

 $n_s T_s$

System	Ts	Ps	Vs	Ns
SI	273 K	1 atm	0.022415 m ³	1 mol
CGS	273 K	1 atm	22.415 liters	1 mol
English	492 °R	14.7 psi	359.05 ft ³	1 lb=-mol

5.3 Real Gases

• At low T and high P

- Ideal gas law \rightarrow poor description of PVT behavior
- Approaches for real gases
 - Virial EOS BWR EOS
 - Cubic EOS
 - Van der Waals EOS
 - Redlich-Kwong EOS
 - Soave-Redlich-Kwong EOS
 - Peng-Robinson EOS
 - Compressibility factor EOS based on CSP (Corresponding State Principles)

Virial Equation of State

Virial Equation of State

 $\frac{P\hat{V}}{RT} = 1 + \frac{B(T)}{\hat{V}} + \frac{C(T)}{\hat{V}^2} + \dots$

The third Virial coefficient

The second Virial coefficient

• Benedict-Webb-Rubin (BWR) EOS

$$\frac{P\hat{V}}{RT} = 1 + \frac{B(T)}{\hat{V}} + \frac{C(T)}{\hat{V}^2} + \frac{D(T)}{\hat{V}^4} + \frac{E(T)}{\hat{V}^5}$$

* Characteristics

•High accuracy

•Cumbersome (Many parameters (8))

•The meaning is not very clear for mixtures

Cubic Equation of State

Soave modification of Redlich-Kwong EOS (SRK – EOS)

$$p = \frac{RT}{\hat{V} - b} - \frac{\alpha(T)a}{\hat{V}(\hat{V} - b)}$$

$$a = 0.42747 \frac{R^2 T_c^2}{P_c}$$

$$b = 0.08664 \frac{RT_c}{P_c}$$

$$m = 0.48509 + 1.55171\omega - 0.15613\omega^2$$

$$\alpha = \left[1 + m(1 - \sqrt{T/T_c})\right]^2$$

* Molecular parameters Tc – Critical Temperature Pc – Critical Pressure w – Pitzer accentric factor

Cubic Equations of State

- **Explicit EOS :** V = V (P,T)
- Implicit EOS : P = P(V,T)
 - Numerical methods are required to solve implicit EOS for given P and T.
 - Newton Raphson Method
 - Secant Method
 - Wegstein Method.
 - See appendix A.2

Estimation of Compressibility Factors - The Law of Corresponding States

- Generalized compressibility chart
 - $\mathbf{Z} = \mathbf{Z} (\mathbf{Tr}, \mathbf{Pr})$
- **Procedure**
 - Look up Tc and Pc
 - If helium or Hydrogen (Newton's correction)
 - Tc (adjusted) = Tc + 8K
 - Pc (adjusted) = Pc + 8atm
 - $\mathbf{Tr} = \mathbf{T}/\mathbf{Tc}$, $\mathbf{Pr} = \mathbf{P}/\mathbf{Pc}$, $\mathbf{Vr} = \mathbf{V}/\mathbf{Vc}$
 - Use compressibility chart

Real Gas Mixtures : Kay's Rule

- For mixtures, use SRK using "mixing rules"
- Simple approximation : Kay's Rule

 $PV = z_m nRT$ $P\hat{V} = z_m RT$

Pseudocritical constants of the mixture

$$T_{c} = y_{a}T_{ca} + y_{b}T_{cb} + y_{b}T_{cb} + \dots$$
$$P_{c} = y_{a}P_{ca} + y_{b}P_{cb} + y_{b}P_{cb} + \dots$$

- Pseudo reduced P and T : T'r = T/T'c, P'r = P / P'c
- Use compressibility chart to get mean compressibility factor for the mixture