Chap. 11. PARTIAL DIFFERENTIAL EQUATIONS

• An equation involving partial derivatives of an unknown function of two more independent variables \rightarrow PDE

Classification of PDES

• **Linear and nonlinear PDEs**

Linear PDE: There is no product of the dependent variable and/or product of its derivatives within the equation Nonlinear PDE: The equation contains a product of the dependent variable and/or a product of the

derivatives

$$
\frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial y^2} + u = 1 (2nd - order, linear), \quad \frac{\partial^3 u}{\partial x^2 \partial y} + x \frac{\partial^2 u}{\partial y^2} + 8u = 5y (3rd - order, linear)
$$

$$
\left(\frac{\partial^2 u}{\partial x^2}\right)^3 + 6 \frac{\partial^3 u}{\partial x \partial y^2} = x (nonlinear), \quad \frac{\partial^2 u}{\partial x^2} + xu \frac{\partial u}{\partial y} = x (nonlinear)
$$

• **Classification based on characteristics (paths of propagation of physical disturbances)**

(I) First-order PDE: Almost all first-order PDEs have real characteristics, and therefore behave much like hyperbolic equations of second order.

(II) Second-order PDE: A second-order PDE in two dependent variables, x and y, may be expressed in a general form as

$$
A\frac{\partial^2 \phi}{\partial x^2} + B\frac{\partial^2 \phi}{\partial x \partial y} + C\frac{\partial^2 \phi}{\partial y^2} + D\frac{\partial \phi}{\partial x} + E\frac{\partial \phi}{\partial y} + F\phi + G = 0
$$

• **The equation is classified according to the expression (B2-4AC) as follows:**

 $(B^2-4AC) < 0 \rightarrow$ Elliptic equation

 $= 0 \rightarrow$ Parabolic equation

 $> 0 \rightarrow$ Hyperbolic equation

(a) Elliptic equations

No real characteristic lines exist

A disturbance propagates in all directions

Domain of solution is a closed region

Boundary conditions must be specified on the boundaries of the domain

(b) Parabolic equations

Only one characteristic line exists

A disturbance propagates along the characteristic line

Domain of solution is an open region

An initial condition and two boundary conditions are required

(c) Hyperbolic equations

Two characteristic lines existA disturbance propagates along the characteristic lines Domain of solution is an open region Two initial conditions along with two boundary conditions are required

• **Boundary conditions**

(a) Dirichlet B.C. (=Essential B.C.): The value of the dependent variable along the boundary is specified

(b) Neumann B.C (=Natural B.C.): The normal gradient of the dependent variable along with the boundary is specified

(c) Mixed B.C. (Robbin B.C.): A combination of the Dirichlet and the Neumann type B.C.'s is specified

•**11.1. Basic Concepts**

- Linear & nonlinear
- Homogeneous & nonhomogeneous
- Ex.1) Important linear 2nd-order PDEs $\frac{z}{z^2} = 0$ u y u xu y u x $\frac{du}{dt^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} \right)$ u $f(x, y)$ y u x $\frac{du}{y^2} = 0$ 2D Laplace Eqn. $\frac{\partial^2 u}{\partial x^2}$ u xu x $\frac{d}{dt} = c^2 \frac{\partial^2 u}{\partial x^2}$ u x $\frac{du}{dt^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ u 2 2 2 2 2 2 2 2 2 $\frac{u}{2} = c^2 \left(\frac{\partial^2}{\partial x} \right)$ 2 2 2 2 2 2 2 2 2 2 $\frac{1}{2}$ $\frac{\partial^2}{\partial x^2}$ 2 $\frac{u}{2} = c^2 \frac{\partial^2}{\partial x^2}$ 2 $\overline{\partial z^2}$ = ∂ $\frac{1}{\partial y^2}$ ∂ $\frac{1}{\partial x^2}$ $\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$ 2D wave Eqn. $\frac{\partial^2 u}{\partial x^2}$ $\overline{\partial v^2}$ = ∂ $\frac{1}{\partial x^2}$ $\frac{\partial^2 u}{\partial y^2} = 0$ 2D Laplace Eqn. $\frac{\partial^2 u}{\partial x^2} = 0$ ∂ $\frac{1}{\partial x^2}$ ∂ $\frac{\partial u}{\partial t} = c^2 \frac{\partial}{\partial t}$ ∂ ∂ $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ ∂ *1D wave Eqn.* $\frac{1}{24} = c^2 \frac{1}{24}$ *1D heat Eqn.* 2D Laplace Eqn. $\frac{6}{2} + \frac{6}{2} = f(x, y)$ 2D Poisson Eqn. 2D wave Eqn. $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 0$ 3D Laplace Eqn.

Theorem 1: **Superposition or linearity principle**

 u_1, u_2 : solutions of a linear homogeneous PDE in R, then $u = c_1 u_1 + c_1 u_2$: also solution of that equation in R

Ex. 1) A solution $u(x,y)$ of PDE u_{xx} -u=0 $u(x,y) = A(y)e^{x} + B(y)e^{-x}$

Ex. 2) PDE
$$
u_{xy} = -u_x
$$

\n $u_x = p \rightarrow p_y = -p$: $p = c(x)e^{-y} \rightarrow u(x,y) = f(x)e^{-y} + g(y)$ where $f(x) = \int c(x)dx$

11.2. Modeling: Vibrating String, Wave Equation

- Equation governing small transverse vibration of an elastic string Find the deflection $u(x,t)$:

Assumptions: - Constant mass/unit length, perfect elastic, no resistance to bending

- Negligible gravitational force
- Small transverse motion in vertical plane \rightarrow vertical movement

Derivation of the PDE from forces

In horizontal direction:
$$
T_1 \cos \alpha = T_2 \cos \beta = T = \text{const}
$$

\nIn vertical direction: $T_2 \sin \beta - T_1 \sin \alpha = \rho \Delta x \frac{\partial^2 u}{\partial t^2}$
\n
$$
\frac{T_2 \sin \beta}{T_2 \cos \beta} - \frac{T_1 \sin \alpha}{T_1 \cos \alpha} = \tan \beta - \tan \alpha = \frac{\rho \Delta x}{T} \frac{\partial^2 u}{\partial t^2}
$$
\n1D Wave Equation:
\n
$$
\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \left(c^2 = \frac{T}{\rho}\right)
$$
\n2nd-order Hyperbolic PDE

11.3. Separation of Variables: Use of Fourier Series

- 1D Wave equation:
$$
\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \quad (c^2 = \frac{T}{\rho})
$$

\n2 B.C.'s: $u(0,t) = u(L,t) = 0$ for all t
\n2 I.C.'s: $u(x,0) = f(x), \frac{\partial u}{\partial t}\Big|_{t=0} = g(x)$
\nInitial deflection
\nInitial velocity

Solving Steps: - Method of separation variables leading to two ODEs.

- Solutions of two eqns. satisfying B.C's
- Final solution of wave eqn. satisfying I.C's, using Fourier series

First Step: Two ODEs using method of separation variables

$$
u(x,t) = F(x)G(t)
$$
 (derivative w.r.t t) (derivative w.r.t x)
(linear system)

$$
\ddot{G} = \frac{F'}{F} = k = const \implies \ddot{G} - c^2 kG = 0
$$

Second Step: Satisfying the B.C.'s

- u(0,t) = F(0)G(t) = 0
Case 1) G = 0 → u = 0 (.:G≠0) Case 2) k=0 → F=0 (.:k≠0)
u(L,t) = F(L)G(t) = 0
Case 3) k=
$$
\mu^2
$$
 → F=0
∴ k = - p^2 (negative)

Solving F(x):

 $F_n(x) = \sin \frac{n\pi}{L} x$ for B = 1 (n = 1,2, …) $F'' + p^2 F = 0 \implies F(x) = A \cos px + B \sin px \iff apply B.C's : F(0) = F(L) = 0$ n $= 1$ (II $= 1, 2, \cdots$ \Rightarrow F_n(x) = sin $\frac{n\pi}{2}$ x for B = 1 (n = 1,2, ···) (p=n π /L) **Solving G(t):** $G + \lambda_n^2 G = 0$ $\lambda = \frac{cm}{m}$ \Rightarrow G $\ddot{G} + \lambda_n^2 G = 0 \quad \left(\lambda = \frac{cn\pi}{L}\right) \Rightarrow G_n(t) = B_n \cos \lambda_n t + B_n^* \sin \lambda_n t$

$$
\mathbf{u}_{n}(x,t) = \left(\mathbf{B}_{n} \cos \lambda_{n} t + \mathbf{B}_{n}^{*} \sin \lambda_{n} t\right) \left(\sin \frac{n\pi}{L} x\right) \quad (n = 1, 2, \cdots)
$$

*(Eigenfunctions or characteristic functions) (*λ*n: eigenvalues or characteristic values)*

U_n: harmonic motion with frequency $\lambda_n/2\pi$ =cn/2L (nth normal mode) nth normal mode has n-1 nodes

Tuning controlled by tension T (or $c^2 = T/\rho$)

Third Step: Solution to the Entire Problem. Fourier Series

- Sum of many solutions $\sf u_n$ satisfying I.C.'s:

$$
u(x,t) = \sum_{n=1}^{\infty} (B_n \cos \lambda_n t + B_n^* \sin \lambda_n t) \left(\sin \frac{n\pi}{L} x \right)
$$

- **Satisfying I.C.1:** initial displacement (u(x,0) = f(x))

- **Satisfying I.C.2:** initial velocity $=\frac{2}{I}\int_0^L f(x)\sin\frac{n\pi}{I}$ L $_{\text{n}} = \frac{2}{I} \int_{0}^{I(x)} \sin \frac{m \pi}{I} dx$ L $f(x) \sin \frac{n\pi x}{2}$ L $x = f(x)$ $B_n = \frac{2}{\pi} \int_0^L f(x) \sin \frac{n\pi x}{\pi} dx$ (Fourier sine series) $\overline{}$ \int $\bigg)$ $\overline{}$ \setminus $\bigg($ $\overline{\partial t}\Big|_{t=0}$ ∂ = $g(x)$ t u $t = 0$ L $n=1$ $u(x,0) = \sum_{n=1}^{\infty} B_n \sin \frac{n}{n}$ = $=\sum^{\infty} B_n \sin \frac{n\pi}{l}$ ∂ *(Fourier sine series)*

$$
\frac{\partial u}{\partial t}\bigg|_{t=0} = \sum_{n=1}^{\infty} B_n^* \lambda_n \sin \frac{n\pi}{L} x = g(x) \qquad B_n^* \lambda_n = \frac{2}{L} \int_0^L g(x) \sin \frac{n\pi x}{L} dx
$$

- **Solution (I):** for the simple case of $g(x) = 0$

$$
u(x,t) = \sum_{n=1}^{\infty} B_n \cos \lambda_n t \sin \frac{n\pi}{L} x \qquad \left(\lambda_n = \frac{cn\pi}{L} \right) \qquad (f^* : odd \, periodic \, extension \, of f with \,period \, 2L)
$$

$$
= \frac{1}{2} \sum_{n=1}^{\infty} B_n \sin \left\{ \frac{n\pi}{L} (x - ct) \right\} + \frac{1}{2} \sum_{n=1}^{\infty} B_n \sin \left\{ \frac{n\pi}{L} (x + ct) \right\} = \frac{1}{2} \left[f^*(x - ct) + f^*(x + ct) \right]
$$

Odd periodic extension of f(x)

Physical Interpretation of the Solution

 $f^*(x - ct)$: a wave traveling to the right as t increases constant along each line x - ct

 $f^*(x + ct)$: a wave traveling to the left as t increases constant along each line $x + ct$

c: wave velocity

 \rightarrow u(x,t): superposition of above two waves

Ex. 1) Vibrating string if the initial deflection is triangular.

See Ex. 3 in Sec. 10.4

Solution (II): for the case of $f(x)=0$

$$
u(x,t) = \sum_{n=1}^{\infty} B_n^* \sin \lambda_n t \sin \frac{n\pi}{L} x \qquad \left(\lambda_n = \frac{cn\pi}{L}\right)
$$

$$
= \frac{1}{2} \sum_{n=1}^{\infty} B_n^* \cos \left\{\frac{n\pi}{L}(x-ct)\right\} - \frac{1}{2} \sum_{n=1}^{\infty} B_n^* \cos \left\{\frac{n\pi}{L}(x+ct)\right\} = \frac{1}{2c} [G(x+ct) - G(x-ct)]
$$

$$
\left(g(x) = \sum_{n=1}^{\infty} B_n^* \lambda_n \sin \frac{n\pi}{L} x, \ G(x) = -\sum_{n=1}^{\infty} B_n^* \cos \frac{n\pi}{L} x \Rightarrow G'(x) = g(x)
$$

Solution (III): for the general case of $f(x) \ne 0$ and $g(x) \ne 0$

$$
u(x,t) = \frac{1}{2} [f(x+ct) + f(x-ct)] + \frac{1}{2c} [G(x+ct) - G(x-ct)]
$$

= P(x+ct) + Q(x-ct)

Exercise: Find the solution of the wave equation with following B.C.'s & I.C.'s

$$
u_{tt} = c^2 u_{xx}
$$

B.C.'s:
$$
u_x(0,t) = u_x(\pi, t) = 0
$$
 for all t
I.C.'s:
$$
u(x,0) = f(x), u_t(x,0) = g(x)
$$

(use Fourier cosine series)

11.4. D'Alembert's Solution of the Wave Equation

- Other method to obtain the solution of the wave eqn. \int \backslash \setminus $\bigg($ ρ $\overline{\partial x^2}$ | c = ∂ $\overline{\partial t^2}$ = $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \quad \left(c^2 = \frac{T}{\rho}\right)$ $\frac{u}{t^2} = c^2 \frac{\partial u}{\partial x^2}$ $\frac{u}{2} = c^2 \frac{\partial u}{\partial x^2}$ c^2 $\frac{u}{2} = c^2 \frac{\partial^2}{\partial x^2}$ 2

u(x,t) \rightarrow u(v,z) using v = x + ct, z = x – ct

$$
u_x = \frac{\partial u}{\partial x} = u_v v_x + u_z z_x, \ u_{xx} = \frac{\partial}{\partial x} (u_x) = u_{vv} + 2u_{vz} + u_{zz}, \ u_{tt} = c^2 (u_{vv} - 2u_{vz} + u_{zz})
$$

$$
c^2 (u_{vv} - 2u_{vz} + u_{zz}) = c^2 (u_{vv} + 2u_{vz} + u_{zz}) \implies u_{vz} = \frac{\partial^2 u}{\partial z \partial v} = 0
$$

$$
\frac{\partial u}{\partial v} = h(v) \rightarrow u = \int h(v)dv + \psi(z) = \phi(v) + \psi(z) \implies u(x, t) = \phi(x + ct) + \psi(x - ct)
$$
\n(D'Alembert's solution)

D'Alembert Solution Satisfying the Initial Conditions

 \int $=\mathbf{c}\phi'(\mathbf{x})-\mathbf{c}\psi'(\mathbf{x})=\mathbf{g}(\mathbf{x}) \rightarrow \phi(\mathbf{x})-\psi(\mathbf{x})=\mathbf{k}(\mathbf{x}_0)+\phi(\mathbf{x})$ $u(x,0) = \phi(x) + \psi(x) = f(x)$ x $\phi_{t}(x,0) = c\phi'(x) - c\psi'(x) = g(x) \rightarrow \phi(x) - \psi(x) = k(x_0) + \frac{1}{c} \int_{x_0} g(s)ds$ $\mathbf C$ $u_1(x,0) = c\phi'(x) - c\psi'(x) = g(x) \rightarrow \phi(x) - \psi(x) = k(x_0) + \frac{1}{2}$ (k(x₀) = ϕ (x₀) - ψ (x₀)) $k(x_0)$ 2 $g(s)ds - \frac{1}{2}$ 2c $f(x) - \frac{1}{x}$ 2 $(x) = \frac{1}{x}$ $k(x_0)$ 2 $g(s)ds + \frac{1}{2}$ 2 c $f(x) + \frac{1}{x}$ 2 $(x) = \frac{1}{x}$ 0 x x0 x x $\overline{0}$ 0 $\Psi(x) = -f(x) - -1$ g(s)ds – $\phi(x) = -f(x) + \frac{1}{x} \left| \right| g(s) ds +$ \int $\int_{x_0}^{x} g(s) ds + \frac{1}{2} k(x_0)$
 $u(x, t) = \frac{1}{2} [f(x + ct) + f(x - ct)] + \frac{1}{2} \int_{x - c}^{x + c} f(x - ct) dt$ − $=$ $|$ t (x + ct) + t (x - ct) $|$ + $x + ct$ $x - ct$ g (s)ds 2 c $f(x+ct)+f(x-ct)\Big|+\frac{1}{2}$ 2 $u(x,t) = \frac{1}{2}$ \hat{L} if $q(s)=0$