
Chap. 8. Vector Differential Calculus. Grad. Div. Curl

8.1. Vector Algebra in 2-Space and 3-Space
- Scalar: a quantity only with its magnitude; temperature, speed, mass, volume, …
- Vector: a quantity with its magnitude and its direction; velocity, acceleration, force, …

(arrow & directed line segment)

Norm of a: length of a vector a. IaI 
=1: unit vector

Equality of a Vectors: a=b: same length and direction.

Components of a Vector: P(x1,y1,z1)  Q(x2,y2,z2) in Cartesian coordinates. 

Length in Terms of Components: 

Position Vector: from origin (0,0,0)  point A (x,y,z):  r=[x,y,z]

Initial and termination point
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Vector Addition, Scalar Multiplication
(1) Addition:  

a + b = b + a (u + v) + w = u + (v + w)
a + 0 = 0 + a = a a + (-a) = 0

(2) Multiplication:                      
c(a + b) =  ca + cb (c + k) a = ca + ka
c(ka) = cka 1a = a 0a = 0 (-1)a = -a

Unit Vectors: i, j, k
i = [1,0,0], j=[0,1,0], k=[0,0,1]

8.2. Inner Product (Dot Product)
Definition: 
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Theorem 1: 
The inner product of two nonzero vectors is zero iff these vectors are perpendicular.

Length and Angle in Terms of Inner Product:

Ex. 1) a=[1,2,0], b=[3,-2,1], angle btw a and b ?

General Properties of Inner Products:
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Derivation of

Application of Inner Products:
Ex. 2) Work 
Ex. 3) Component of a force in a given direction
Ex. 5) Orthogonal straight lines in the plane
Ex. 6) Normal vector to a plane
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8.3. Vector Product (Cross Product)
Definition: 

In components: v = [v1,v2,v3]
= [a2b3-a3b2, a3b1-a1b3, a1b2-a2b1]

Right-handed triple of vectors a, b, v
i, j, k form a right-handed triple in the positive directions 

How to memorize above formula: 

General Properties of Vector Products: 
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Typical Applications of Vector Products
Ex. 4) Moment of a force (I)
Ex. 5) Moment of a force (II)
Ex. 6) Velocity of a rotating body

Scalar Triple Product: 

Volume of the parallelepiped with a, b, c

Theorem 1: Three vectors form a linearly independent set iff their scalar triple product
is not zero. 
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8.4. Vector and Scalar Functions and Fields. Derivatives
- Two kinds of functions
(1) Vector functions:                                                   depending on the point p in space.

 a vector field
In Cartesian coordinates, 

(2) Scalar functions:                depending on p.    a scalar field

Ex. 1) Scalar function (Euclidean distance in space)
Ex. 2, 3) Vector function (Velocity field, force field)

Vector Calculus
- Basic concepts of vector calculus
(1) Convergence:                                                   (a: limit vector)

(vector function v of a real variable t has limit u)              

(2)  Continuity:                              vector function v(t) is continuous at t=t0.

three components are continuous at t0.
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Derivative of a vector function
Definition:

Partial Derivatives of a Vector Function

differentiable functions of n variables, t1, …, tn.

Partial derivative of v: 
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