Chap. 8. Vector Differential Calculus. Grad. Div. Curl

8.1. Vector Algebra in 2-Space and 3-Space

- Scalar: a quantity only with its magnitude; temperature, speed, mass, volume, ...
- Vector: a quantity with its magnitude and its direction; velocity, acceleration, force, ... (arrow & directed line segment)

Norm of <u>a</u>: length of a vector <u>a</u>. lal

=1: unit vector

Equality of a Vectors: <u>a</u>=<u>b</u>: same length and direction.

Components of a Vector: $P(x_1, y_1, z_1) \rightarrow Q(x_2, y_2, z_2)$ in Cartesian coordinates. $\underline{a} = \overrightarrow{PQ} = [x_2 - x_1, y_2 - y_1, z_2 - z_1] = [a_1, a_2, a_3]$

Length in Terms of Components: $|\underline{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

Position Vector: from origin $(0,0,0) \rightarrow \text{point A } (x,y,z)$: <u>r</u>=[x,y,z]

Vector Addition, Scalar Multiplication

(1) Addition:
$$\underline{a} + \underline{b} = [a_1 + b_1, a_2 + b_2, a_3 + b_3]$$

 $\underline{a} + \underline{b} = \underline{b} + \underline{a}$
 $\underline{a} + \underline{0} = \underline{0} + \underline{a} = \underline{a}$
 $\underline{a} + (-\underline{a}) = \underline{0}$
 $\underline{a} + (-\underline{a}) = \underline{0}$

(2) Multiplication:
$$c\underline{a} = [c\underline{a}_1, c\underline{a}_2, c\underline{a}_3]$$

 $c(\underline{a} + \underline{b}) = c\underline{a} + c\underline{b}$ (c + k) $\underline{a} = c\underline{a} + k\underline{a}$
 $c(\underline{k}\underline{a}) = c\underline{k}\underline{a}$ 1 $\underline{a} = \underline{a}$ 0 $\underline{a} = \underline{0}$ (-1) $\underline{a} = -\underline{a}$

b

<u>a+b</u>

Unit Vectors: i, j, k
$$\underline{a} = [a_1, a_2, a_3] = a_1 \underline{i} + a_2 \underline{j} + a_3 \underline{k}$$

i = [1,0,0], j=[0,1,0], k=[0,0,1]

8.2. Inner Product (Dot Product)
Definition:
$$\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \gamma$$
 if $\underline{a} \neq \underline{0}, \underline{b} \neq \underline{0}$
 $\underline{a} \cdot \underline{b} = 0$ if $\underline{a} = \underline{0}$ or $\underline{b} = \underline{0}; \cos \gamma = 0$
 $\underline{a} \cdot \underline{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = \sum_{i=1}^{3} a_i b_i$
 $\underline{a} \cdot \underline{b} = 0$ (\underline{a} is orthogonal to $\underline{b}; \underline{a}, \underline{b}$ =orthogonal vectors)

Theorem 1:

The inner product of two nonzero vectors is zero iff these vectors are perpendicular.

Length and Angle in Terms of Inner Product:

length of $\underline{\mathbf{a}} : |\underline{\mathbf{a}}| = \sqrt{\underline{\mathbf{a}} \cdot \underline{\mathbf{a}}}$

angle btw two vectors:
$$\cos \gamma = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{|\underline{\mathbf{a}}| |\underline{\mathbf{b}}|} = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{\sqrt{\underline{\mathbf{a}} \cdot \underline{\mathbf{a}}} \sqrt{\underline{\mathbf{b}} \cdot \underline{\mathbf{b}}}}$$

Ex. 1) \underline{a} =[1,2,0], \underline{b} =[3,-2,1], angle btw \underline{a} and \underline{b} ?

General Properties of Inner Products:

$$\begin{bmatrix} q_1 \underline{a} + q_2 \underline{b} \end{bmatrix} \cdot \underline{c} = q_1 \underline{a} \cdot \underline{c} + q_2 \underline{b} \cdot \underline{c} \qquad \underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{a} \qquad \underline{a} \cdot \underline{a} \ge 0$$
$$\begin{bmatrix} \underline{a} + \underline{b} \end{bmatrix} \cdot \underline{c} = \underline{a} \cdot \underline{c} + \underline{b} \cdot \underline{c}$$

 $\begin{aligned} |\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}| &\leq |\underline{\mathbf{a}}| |\underline{\mathbf{b}}| & \text{Schwarz inequality} \\ |\underline{\mathbf{a}} + \underline{\mathbf{b}}| &\leq |\underline{\mathbf{a}}| + |\underline{\mathbf{b}}| & \text{Triangle inequality} \\ |\underline{\mathbf{a}} + \underline{\mathbf{b}}|^2 + |\underline{\mathbf{a}} - \underline{\mathbf{b}}|^2 &= 2\left(\!|\underline{\mathbf{a}}|^2 + |\underline{\mathbf{b}}|^2\right) & \text{Parallelog ram equality} \end{aligned}$

Derivation of $\underline{a} \cdot \underline{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ $\underline{a} = a_1 \underline{i} + a_2 \underline{j} + a_3 \underline{k}, \quad \underline{b} = b_1 \underline{i} + b_2 \underline{j} + b_3 \underline{k}$ $\underline{i} \cdot \underline{j} = \delta_{ij}$ 1 for i = j0 for $i \neq j$ $\Rightarrow \underline{a} \cdot \underline{b} = a_1 b_1 \underline{i} \cdot \underline{i} + a_1 b_2 \underline{i}/j + a_1 b_3 \underline{i}/\underline{k} + \dots + a_2 b_3 \underline{k} \cdot \underline{k} = a_1 b_1 + a_2 b_2 + a_3 b_3$

Application of Inner Products:

Ex. 2) Work

Ex. 3) Component of a force in a given direction

Ex. 5) Orthogonal straight lines in the plane

Ex. 6) Normal vector to a plane

8.3. Vector Product (Cross Product) Definition: $\underline{v} = \underline{a} \times \underline{b}$, length: $|\underline{v}| = |\underline{a}| |\underline{b}| \sin \gamma$ In components: $\underline{v} = [v_1, v_2, v_3]$ $= [a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1]$ Right-handed triple of vectors $\underline{a}, \underline{b}, \underline{v}$ $\underline{i}, \underline{j}, \underline{k}$ form a right-handed triple in the positive directions How to memorize above formula: $|\underline{i} \quad \underline{j} \quad \underline{k}|$

ow to memorize above formula:

$$\underline{a} \times \underline{b} = \begin{vmatrix} -z & -z & -z \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$\underline{i} \times \underline{j} = \sum_{k=1}^{3} \varepsilon_{ijk} \underline{k} \qquad \varepsilon_{ijk} = +1 \text{ if } ijk = 123,231,312$$

$$\varepsilon_{ijk} = -1 \text{ if } ijk = 321,132,213$$

$$\varepsilon_{ijk} = 0 \quad \text{if any two indices are alike}$$

General Properties of Vector Products:

$$\begin{aligned} (\underline{a}\underline{a}) \times \underline{b} &= q(\underline{a} \times \underline{b}) = \underline{a} \times (\underline{q}\underline{b}) \\ (\underline{a}\underline{b}) \times \underline{c} &= (\underline{a}\underline{c}\underline{c}) + (\underline{b}\underline{c}\underline{c}) \\ \underline{a} \times \underline{c} \neq \underline{c} \times \underline{a} \quad (\because \underline{i} \times \underline{j} \neq \underline{j} \times \underline{i}) \\ \underline{a} \times \underline{c} \neq \underline{c} \times \underline{a} \quad (\because \underline{i} \times \underline{j} \neq \underline{j} \times \underline{i}) \\ \end{aligned}$$

Typical Applications of Vector Products

Ex. 4) Moment of a force (I) Ex. 5) Moment of a force (II)

Ex. 6) Velocity of a rotating body

Scalar Triple Product:

$$\underline{a} = [a_1, a_2, a_3], \ \underline{b} = [b_1, b_2, b_3], \ \underline{c} = [c_1, c_2, c_3]$$

$$(\underline{a} \ \underline{b} \ \underline{c}) = \underline{a} \cdot (\underline{b} \times \underline{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \qquad \underline{b} \times \underline{c}$$

Volume of the parallelepiped with <u>*a*</u>, <u>*b*</u>, <u>*c*</u>

 $(\underline{k}\underline{a} \ \underline{b} \ \underline{c}) = \underline{k}(\underline{a} \ \underline{b} \ \underline{c}) \qquad \underline{a} \cdot (\underline{b} \times \underline{c}) = (\underline{a} \times \underline{b}) \cdot \underline{c} = \underline{c} \cdot (\underline{a} \times \underline{b}) \quad \text{see matrix expression}$

Theorem 1: Three vectors form a linearly independent set iff their scalar triple product is not zero.

8.4. Vector and Scalar Functions and Fields. Derivatives

- Two kinds of functions

(1) Vector functions: $\underline{v} = \underline{v}(p) = [v_1(p), v_2(p), v_3(p)]$ depending on the point p in space.

 \rightarrow a vector field

In Cartesian coordinates, $\underline{v}(x, y, z) = [v_1(x, y, z), v_2(x, y, z), v_3(x, y, z)]$

(2) Scalar functions: f = f(p) depending on p. \rightarrow a scalar field

Ex. 1) Scalar function (Euclidean distance in space)

Ex. 2, 3) Vector function (Velocity field, force field)

Vector Calculus

Basic concepts of vector calculus

Convergence: lim_{n→∞} |<u>a</u>_n - <u>a</u>| = 0 or lim_{n→∞} <u>a</u>_n = <u>a</u>
lim_{n→∞} |<u>v</u>(t) - <u>u</u>| = 0 or lim_{n→∞} <u>v</u>(t) = <u>u</u>
(vector function <u>v</u> of a real variable t has limit <u>u</u>)

(2) Continuity: lim_{t→t₀} <u>v</u>(t) = <u>v</u>(t₀) vector function <u>v</u>(t) is continuous at t=t₀. <u>v</u>(t) = [v₁(t), v₂(t), v₃(t)] = v₁(t)<u>i</u> + v₂(t)<u>j</u> + v₃(t)<u>k</u> three components are continuous at t₀.

Derivative of a vector function

Derivative $\underline{v}'(t)$ is obtained by differentiating each component separately.

$$(\underline{v}\underline{v}) = \underline{v}\underline{v} (\underline{v}\underline{w}) = \underline{v}\underline{v}\underline{w} (\underline{u}\underline{v}\underline{v}) = \underline{u}\underline{v}\underline{v}\underline{v} + \underline{u}\underline{v}\underline{v}$$
$$(\underline{u}\underline{v}\underline{v}) = \underline{u}\underline{v}\underline{v}\underline{v} + \underline{u}\underline{v}\underline{v} (\underline{u}\underline{v}\underline{w}) = (\underline{u}\underline{v}\underline{w}) + (\underline{u}\underline{v}\underline{v}\underline{w}) + (\underline{u}\underline{v}\underline{w}\underline{v}\underline{v}) + (\underline{u}\underline{v}\underline{w}\underline{v}\underline{v}\underline{v})$$

Partial Derivatives of a Vector Function

 $\underline{v}(t) = [v_1, v_2, v_3] = v_1 \underline{i} + v_2 \underline{j} + v_3 \underline{k} \quad \text{differentiable functions of n variables, } t_1, \dots, t_n.$

Partial derivative of <u>v</u>:

$$\frac{\partial \underline{\mathbf{v}}}{\partial t_1} = \frac{\partial \mathbf{v}_1}{\partial t_1} \underline{\mathbf{i}} + \frac{\partial \mathbf{v}_2}{\partial t_1} \underline{\mathbf{j}} + \frac{\partial \mathbf{v}_3}{\partial t_1} \underline{\mathbf{k}} \qquad \frac{\partial^2 \underline{\mathbf{v}}}{\partial t_1 \partial t_m} = \frac{\partial^2 \mathbf{v}_1}{\partial t_1 \partial t_m} \underline{\mathbf{i}} + \frac{\partial^2 \mathbf{v}_2}{\partial t_1 \partial t_m} \underline{\mathbf{j}} + \frac{\partial^2 \mathbf{v}_3}{\partial t_1 \partial t_m} \underline{\mathbf{k}}$$