

Bioreactor Design Criteria

- 1. Microbiological and biochemical characteristics of the cell systems (Microbial, mammalian, plant cell)
- 2. Hydrodynamic characteristics of the bioreactor
- 3. Mass and heat characteristics of the bioreactor
- 4. Kinetics of cell growth and product formation
- 5. Genetic stability characteristics of the cell system
- 6. Aseptic equipment design
- 7. Control of bioreactor environment
- 8. Implication of bioreactor design on downstream product separation
- 9. Capital and operating costs of the bioreactor
- 10. Potential for bioreactor scale-up

Bioreactor Configuration

It affects the liquid flow pattern

 The performance of a fermentation in terms of yield and production rate.

Principle Types of Bioreactor (Fermenter)

- Batch fermenter(BF) or BR
- Continuous stirred-tank fermenter(CSFR) or CSTR
- Tubular fermenter(TF) or TR
- Fluidized bed fermenter(FBF) or FBR

Aeration and Agitation

- Impeller(Agitator)
 - To diminish the size of air bubbles to give a bigger interfacial area for oxygen transfer and to decrease the diffusion path.
 - **O** To maintain a uniform environment throughout the vessel contents.
- Disk turbine, Vaned disc, Open turbine of variable pitch, Marine propeller
- Baffles
 - To prevent liquid swirl(vortex) and thereby enables the impeller to impose power on the liquid in the form of turbulence and flow.
 - To improve aeration efficiency (metal strips : roughly 1/10 of the vessel diameter)

Aeration System (Sparger)

- Porous sparger
 - o Sintered glass, ceramics or metal
 - **Output** Usually for non-agitated vessels
 - Blocking problem by growth of the microbial culture
- Orifice sparger(perforated sparger)
 - o Small stirred fermenters
- Nozzle sparger(Open or partially close pipe)

Bioreactors

1. Batch reactor: Free enzyme

- O High viscosity or insoluble substrate can be used
- O New enzyme required for each batch
- O Substrate inhibition can be a problem

Continuous stirred tank reactor(CSTR): Free or Immobilized enzyme

- o pH control simple
- o Enzyme addition/replacement simple
- O Colloidal or insoluble substrates can be used
- Less problem with substrate inhibition

Continuous-flow stirred tank with ultrafiltration :Free or Immobilized enzyme

- Colloidal or insoluble substrates can be used
- o Poor enzyme stability over long term operation
- o Enzyme denatured or adsorbed at membrane surface

4. Plug-flow: Immobilized enzyme

- o High conversion efficiency
- Less problem with product inhibition
- Cannot be used with insoluble or high viscosity substrates

5. Fluidized-bed: Immobilized enzyme

- o Better heat and mass transfer
- o Insoluble and high viscosity substrates can be used
- Low pressure drop
- o Energy input to maintain a fluidized-bed is large

Advantage of Immobilized Biocatalysts

1. Biocatalyst may be reused or used continuously

(conversion per unit of enzyme increased)

- 2. Environmental stability may be enhanced over a broader range (pH, temp.)
- 3. Yield and conversion may be improved

Turbine impeller - Large vortex - no baffles Impeller Type Marine impeller - Axial flow with baffle Turbine impeller - Radial flow with baffle

Flat-Blade Turbine and Sparge Ring

Tower Fermenters (Airlift)

- are vessels which have no mechanical agitation.
- 1. Bubble column
 - Is a cylindrical vessel containing a liquid through which air is bubbled.
 - o Advantages
 - Simple construction
 - Absence of moving parts
 - Avoidance of mechanical problems
 - High energy efficiency for mass transfer
 - Lower power input requirements

Airlift loop fermenters

- are fermenters in which the liquid is recirculated by the density difference between the gased and the ungassed section of the equipment.
- Internal loops (or draft tubes)
 - are essentially modifications of the bubble column, in which the rising gassed liquid is separated from the downflow liquidby a concentric cylinder or draft tube.

External loops

- are fermenters where the upflow and downflow streams flow in two separate cylinders or tubes, the riser and the downcomer section, connected at the top and bottom by side arms.
- Various modifications
 - Split-cylinder loop airlift
 - Airlift with motionless mixers
 - Multistage airlift

Types of Reactors Employed for Aerobic Fermentations. Stirred vessel, Bubble column, Loop reactors (Internal loop and External loop)

