Chapter 1. Introduction

Polymer(many parts)

: long chain molecule composed of a large number of repeating units polymer (n>1000) : plastics, fibers and elastomers oligomer (n<10)

U.S. polymer production (1993)

: plastics(78%), fibers(14%), elastomers(7.4%)

1.1 Classification

Thermal processing behavior : thermoplastics & thermosets

Polymerization mechanism : addition & condensation

ex) addition-type polymers derived from substituted ethylene

TABLE 1.2 EXAMPLES OF SOME IMPORTANT ADDITION POLYMERS DERIVED FROM ETHYLENE DERIVATIVES

$$R_1 \subset C \subset R_2$$

Polymer	R_1	R ₂	R ₃	R ₄	Repeating Unit
Polyethylene	Н	Н	Н	Н	-{-CH₂CH₂-}
Polypropylene	Н	Н	Н	CH ₃	[-сн₂сн-] сн₃
Poly(vinyl chloride)	Н	Н	Н	Cl	-CH2-CH
Poly(vinyl alcohol)	Н	Н	н	ОН	-CH2-CH
Polyacrylonitrile	Н	Н	Н -	C≡N	$\begin{array}{c} -CH_2 - CH - \\ C = N \end{array}$
Poly(vinyl acetate)	Н	Н	Н	O C=O CH ₃	-CH ₂ -CH
Polystyrene	Н	Н	Н		-CH2-CH
Poly(methyl methacrylate)	Н	Н	СН3	CH ₃	CH ₃
Poly(vinylidene chloride)	Н	Н	Cl	CI	-{-CH ₂ -C-}-

Polymerization kinetics: step growth & chain growth

1.2 Polymer Structure

Copolymers: random, alternating, block, graft, ...

RANDOM

ALTERNATING

ABA-TRIBLOCK

Figure 1.4. Possible structures of copolymers containing A and B repeating units.

TABLE 1.5 SCHEME FOR NAMING COPOLYMERS

Туре	Connective	Example			
Unspecified	<i>-co-</i>	Poly[styrene-co-(methyl methacrylate)]			
Statisticala	-stat-	Poly(styrene-stat-butadiene)			
Random	-ran-	Poly[ethylene-ran-(vinyl acetate)]			
Alternating	-alt-	Poly[styrene-alt-(maleic anhydride)]			
Block	-block-	Polystyrene-block-polybutadiene			
Graft	-graft-	Polybutadiene-graft-polystyrene			

^a A statistical polymer is one in which the sequential distribution of the monomeric units obeys statistical laws. In the case of a random copolymer, the probability of finding a given monomeric unit at any site in the chain is independent of the neighboring units in that position.

Tacticity: isotactic, syndiotactic & atactic

Figure 1.5. Two forms of stereochemical configuration of an extended-chain vinyl polymer having a substituent group R other than hydrogen.

Geometric isomers

ex) polybutadiene : vinyl, cis & trans

Figure 1.7. Alternative pathways for the polymerization of 1,3-butadiene (**A**) to give 1,2-poly(1,3-butadiene) (**B**), cis-1,4-poly(1,3-butadiene) (**C**), or trans-1,4-poly(1,3-butadiene) (**D**).

Nomenclature

structure-based : poly(CRU) --- IUPAC name source-based : poly(monomer) --- popular ex) polystyrene --> poly(1-phenylethylene) polytetrafluoroethylene --> poly(difluoromethylene)

1.3 Molecular Weight

Figure 1.8. A typical distribution of molecular weights shown as a plot of the number of moles of chains, N_i , having molecular weight, M_i , against M_i .

Average MW

$$\overline{M} = \frac{\sum N_i M_i^{\alpha}}{\sum N_i M_i^{\alpha-1}} \quad \text{(discrete distribution)} \qquad W_i = N_i M_i$$

$$\alpha = 1 : \text{ number avg. MW}$$

$$\alpha = 2 : \text{ weight avg. MW}$$

$$\alpha = 3 : \text{ z avg. MW}$$

$$\overline{M} = - \int_0^\infty \!\! \frac{N M^\alpha \, dM}{\int_0^\infty \!\! N M^{\alpha-1} \, dM} \quad \text{(continuous distribution)}$$

PDI (polydispersity index) = $\overline{M}_w/\overline{M}_n$

1.4 Thermal Transition

Example problem 1-1.

A polydisperse sample of polystyrene is prepared by mixing three monodisperse samples in the following proportions:

- 1g 10,000 molecular weight
- 2g 50,000 molecular weight
- 2g 100,000 molecular weight

Using this information, determine the following: (a) number-average; (b) weight-average; and (c) z-average molecular weight of the mixture.