Chapter 4. Fluid Flow through a Packed Bed of Particles

4.1 Pressure Drop - Flow Relationship

이제 입자층은 움직이지 않고 유체가 이 층을 지나간다고 생각하자. 여기서 서로가 미치는 항력은 유체흐름의 압력 강하로 나타나는데....

1) Laminar Flow

Fluid flow through a packed bed: simulated by fluid flow through a hypothetical tubes

$$\therefore \frac{(-\Delta p)}{H} = \frac{-32\mu U}{D^2}$$

$$\Rightarrow \frac{(-\Delta p)}{H_e} = \frac{K_1 \mu U_i}{D_e^2}$$

Hagen-Poiseille equation

Substituting suitable relations

$$\therefore \frac{(-\Delta p)}{H} = 180 \frac{\mu U}{d_p^2} \frac{(1-\varepsilon)^2}{\varepsilon^3}$$

Carman-Kozeny equation

3) General Equation for Turbulent and Laminar Flow

Ergun equation

$$\frac{(-\Delta p)}{H} = 150 \frac{\mu U}{d_p^2} \frac{(1-\varepsilon)^2}{\varepsilon^3} + 1.75 \frac{\rho_f U^2}{d_p} \frac{(1-\varepsilon)}{\varepsilon^3}$$

Laminar Turbulent

Laminar flow for
$$Re* = \frac{d_p U p_f}{\mu(1-\varepsilon)} < 10$$

Turbulent flow for $Re*=\frac{d_p U P_f}{\mu(1-\varepsilon)} > 2000$

or

$$f*=\frac{150}{Re*}+1.75$$
where $f*=\frac{(-\Delta p)}{H}\frac{d_p}{\rho_f U^2}\frac{\epsilon^3}{(1-\epsilon)}$
Friction factor

Figure 4.1

4) Nonspherical Particles

 $d_{b,sv}$ (surface-volume diameter) instead of d_{b}

Worked Example 4.1

4.2 (Liquid) Filtration

 For filtration theory and practice, see
 Slurry

 http://coel.ecgf.uakron.edu/~chem/fclty/chase/FILTRAT
 Slurry

 ION*20FUNDAMENTALS_files/frame.htm
 Filter cake

Filtrate

Introduction: Cake filtration
 Cake on filter medium: its depth increasing with time

Incompressible: constant voidage of cake Compressible:

Filter media : Canvas cloth, woolen cloth, metal cloth, glass cloth, paper, synthetic fabrics

Filter aids : To avoid cake plugging
- Diatomaceous silica, perlite, purified woolen cellulose, other
inert porous solids

- By either adding slurry (increasing cake permeability)

or precoating the filter media surface

(preventing gelatinous solids from plugging the media) Types of liquid filters

	Batch	Continuous
Pressure	Filter Press	Automatic Belt Filters
Filtration	Shell-and-Leaf Filters	
Vacuum	Discontinuous Versum Filters	Rotary Drum Filters
Filtration	Discontinuous vacuum fiiters	Horizontal Belt Filters
Centrifugal	Detail Three	Centinuous Transs
Filtration	batten types	Continuous Types

2) Compressible Cake

For cake filter

From laminar part of Ergun equation

$$\frac{(-\Delta p)}{H} = \frac{150\mu U(1-\varepsilon)^2}{d_{\ell}^2 \varepsilon^3}$$

where L : cake thickness

 d_{b} : surface-volume diameter of particle

By defining cake resistance r_c

$$r_{c} = \frac{150(1-\varepsilon)^{2}}{d_{p}^{2}\varepsilon^{3}},$$
$$\frac{-(-\Delta p)}{H} = r_{c} \mu U$$
where $U = \frac{1}{A} \frac{dV}{dt}$

V: volume of slurry fed to filter

여기서는 비압축성 cake를 가정하여

Also defining ϕ (volume formed by passage of unit volume filtrate)

$$\Phi = \frac{HA}{V},$$
$$\frac{dV}{dt} = \frac{A^2(-\Delta p)}{r_c \mu \Phi V}$$

Including the resistance of filter medium,

since the resistances of the cake and the filter medium are in series.

$$(-\Delta p) = (-\Delta p_m) + (-\Delta p_c)$$

$$\downarrow$$

$$\frac{1}{A} \frac{dV}{dt} r_c \mu H_c$$

By analogy for the filter medium

$$(-\Delta p_m) = \frac{1}{A} \frac{dV}{dt} r_m \mu H_m$$

$$\therefore (-\Delta p) = \frac{1}{A} \frac{dV}{dt} (r_m \mu H_m + r_c \mu H_c)$$

Defining equivalent height of filter cake and volume of filtrate

$$r_m H_m = r_c H_{eq}$$
 and $H_{eq} = \frac{\Phi V_{eq}}{A}$

where $V_{\it eq}$: volume of filtrate passing to create a cake of thickness $H_{\it eq}$

$$\therefore \frac{1}{A} \frac{dV}{dt} = \frac{(-\Delta p)A}{r_c \mu (V + V_{eq})\Phi}$$

Constant rate filtration

$$\frac{1}{A}\frac{dV}{dt} = \frac{(-\Delta p)A}{r_c \mu (V + V_{eq})\Phi} = constant$$

Constant pressure filtration

Integrating

$$\frac{t}{V} = \frac{r_c \Phi \mu}{A^2 (-\Delta p)} \left(\frac{V}{2} + V_{eq}\right)$$

4) Washing the Cake

Displacement the filtrate in the voids with clean solvent Diffusion into the wash water 5) Compressible Cake

For compressible filter cake,

$$\frac{dp}{dL} = r_c \mu U$$

where r_c : a function of pressure difference

Worked Example 4.2

6) Centrifugal Filtration

From (*) and substituting the expression for R_c

$$-\Delta p = Q \mu \left(\frac{m_c a}{A^2} + \frac{R_m}{A} \right)$$

where $m_c = c_s V$

In a centrifugal field, $dp = \rho r \omega^2 dr$

Integration

$$-\Delta p = \frac{\rho \omega^2 (r_2^2 - r_1^2)}{2}$$
$$\therefore \quad Q = \frac{\rho \omega^2 (r_2^2 - r_1^2)}{2\mu \left(\frac{m_c \alpha}{A^2} + \frac{R_m}{A}\right)}$$

4.3 Commercial Liquid Filter

그림 3 Rotary Vacuum Filter

discharge automatic valve slurry cake formation

slurry feed

그림 4. Belt Filter

그림 5. Centrifuge Filter