		Thermophoretic
Particle	Terminal settling	velocities in a
diameter(μ_m)	velocity(m/s)	temperature gradient
		of 1°C/cm at 293K ^a
0.01	6.7×10 ⁻⁸	2.8×10 ⁻⁶
0.1	8.6×10 ⁻⁷	2.0×10 ⁻⁶
1.0	3.5×10 ⁻⁵	1.3×10 ⁻⁶
10.0	3.1×10 ⁻³	7.8×10 ⁻⁷

Terminal settling and thermophoretic velocities in a temperature gradient of 1°C/cm at 293K ^a $k_p = 10k_a$

Chapter 7S. Separation of Particles from a Gas:

ESP and Filters

7S.1 Electrostatic Precipitators (ESP)

Collection of charged particles on opposite electrode

(particle charging / collection)

1) Particle Charging - Corona Discharge

Consider a cylindrical(wire-in-tube) ESP

As V^{\uparrow} , air \rightarrow *electrical breakdown* near the wire

그리고 다음 그림에서 보듯 두 개의 zone이 생긴다.

Active zone → Active electrical breakdown
 "Electron avalanche" - Blue glow

- Passive zone \rightarrow Particle charging

* Positive corona vs. negative corona

Positive corona	Negative corona	
	-More stable than positive corona -Needs electron absorbing gas(SO ₂ , O ₂ , H ₂ O)	
Suitable for <i>domestic</i> application	-Produces O ₃ as byproduct	
	-Suitable for <i>industrial applications</i>	

2) Collection Efficiency

Coordinate system : regarded as rectangular, even though cylindrical coordinate system prevails, since the layer is so thick.

$$UA_{c}(n \mid x - n \mid x + \Delta x) = \left[\left(\frac{P\Delta y}{A_{c}} \right) n \mid x \right] UA_{c}$$

where A_c : cross sectional area of the ESP

P : Perimeter of the ESP wall

Substituting for Δ_y , and $\Delta_x \rightarrow \mathbf{0}$

$$\frac{-dn}{n} = -\frac{PU_e dx}{A_e U} = -\frac{PU_e dx}{Q}$$

Integration yields

$$G(d_p) = 1 - \frac{n_{out}}{n_{in}} = 1 - \exp\left(\frac{-PLU_e(d_p)}{Q}\right) = 1 - \exp\left(\frac{-AU_e(d_p)}{Q}\right)$$

$$\uparrow$$

$$P = A/L$$

3) Particles suitable for ESP collection

 ρ (*electrical resistivity*) of particles $\leftarrow V = iR = i\frac{\rho l}{A}$

e.g. Fly ash : $10^6 \sim 10^{11} \Omega \cdot m$ Carbon black : $10^{-5} \Omega \cdot m$

If $\rho < 10^{2\Omega} \cdot m$: fast transfer of charge from particle to electrode \rightarrow reentrainment of particles $\rightarrow G \downarrow$

If $p > 2 \times 10^{8} \Omega \cdot m$: slow transfer of charge from particle to electrode

 \rightarrow charge : stay longer \rightarrow reverse corona \rightarrow $_{G}\downarrow$

- \therefore **Optimum** : $10^{6}\Omega \cdot m < \rho < 10^{8}\Omega \cdot m$
- * Artificial modification of resistivity $rac{}$ Addition of SO₃, water, NH₃ to high-p particles $\rightarrow p \downarrow$

7S.2 Particle (Brownian) Diffusion

1) Introduction

Brownian motion

: Random wiggling motion of particles by collision of fluid molecules on them

Brownian Diffusion

Particle migration due to concentration gradient by Brownian motion

$$\vec{J} = -D_p \overrightarrow{\nabla} n$$

Fick's law

where D_p : diffusion coefficient of particles cm²/s

C : particle concentration by number or mass

확산의 표시방법은 일반적인 migration 표시방법과 다르다.

2) Coefficient of Diffusion D_{h}

$$D_p = \frac{kTC_c}{3\pi\mu d_p}$$

액체분자의 확산계수 가 10⁻⁵cm²/s 정도임에 유의

3) Root-mean square displacement

Particle conservation equation

Particle diameter, $\mu_{\mathcal{M}}$	Diffusion coefficient, $D_p(\text{cm}^2/\text{s})$	
0.00037(air molecule)	0.19	
0.01	5.2×10 ⁻⁴	
0.1	6.7×10 ^{−6}	
1.0	2.7×10 ⁻⁷	
10	2.4×10 ⁻⁸	
$\therefore \frac{\partial n}{\partial t} = -\frac{\partial J_x}{\partial x}$		
	0i $0x$	

Diffusion Coefficient of Unit-density sphere at 20° C in air

Introducing Fick's law

$$\frac{\partial n}{\partial t} = D_p \frac{\partial^2 n}{\partial x^2}$$

for constant D_p B.C. n=0 for $x \neq 0$ and t=0 $n=n_0$ for x=0 and t=0

 $\frac{\partial n}{\partial x} = 0$ for x=0 and all t

n=0 for x=± ∞ and all t

The solution is:

$$n(x, t) = \frac{n_0}{(4\pi D_p t)^{1/2}} \exp\left(\frac{-x^2}{4D_p t}\right)$$

Root-mean square displacement, x rms

$$x_{rms} = \left[\frac{\int_{-\infty}^{+\infty} x^2 n(x,t) dt}{n_0}\right]^{1/2} = \sqrt{2D_p t}$$

7S.3 Thermophoresis

- Discovered by Tyndall in 1870

실제 예 : radiator의 벽이나 인근 벽에 먼지가 쓸지 않는 현상 담배연기가 차가운 벽 또는 창문 쪽으로 이동해 가는 현상 차가운 쪽에 면한 벽이 먼저 더러워지는 현상

In free molecular regime

$$\overrightarrow{F_{th}} = -p\lambda d_p^2 \frac{\overrightarrow{\nabla T}}{T}$$

Waldmann and Schmidt(1966)

$$\therefore \quad \overrightarrow{U_{th}} = -\frac{3\overrightarrow{v v v}T}{4\left(1 + \frac{\pi a}{8}\right)T} = -0.55 \, \overrightarrow{v T}$$

- independent of d_p

Correction for continuum fluid-particle interaction

$$\overrightarrow{F}_{th} = \frac{-9\pi\mu^2 d_p H \nabla T}{2\rho_G T}$$

Brock(1962)

$$H \sim \frac{1}{1+6Kn} \left(\frac{\frac{k_G}{k_p} + 4.4Kn}{1+2\frac{k_G}{k_p} + 8.8Kn} \right)$$
$$\therefore \overrightarrow{U_{th}} = \frac{-3\mu C_c H \overrightarrow{\nabla} T}{2\rho_G T}$$

7S.4 Filters

Filter materials - cellulose(wood), glass, plastic fibers

* High-temperature filters - metal. graphite, quartz, ceramic

1) Air filters - depth filters

- Fibrous filters
- Membrane(porous) filters
- Capillary filters

Low solid loading $\sim mg/m^3$

e.g. air-conditioning filters

- $U \sim 0.25 - 1.5 m/s$, $\Delta p \sim 10 - 1000 Pa$

HEPA(high efficiency particulate air) filter

- used in glove box, clean rooms, nuclear fuel industry

 $- U \sim 0.1 m/s$, $\Delta p \sim 200 Pa$

Three major mechanisms of particle collection on

fibrous filter

Collection mechanisms of the fibrous filters

- **Diffusion** : < 0.5µm
- Inertial impaction : < 1µm
- Interception : 1µm
- **Electrostatic attraction** : $0.01\mu m$ to $5\mu m$

From the particle balance around differential section dx in the

fibrous bed,

$$\frac{dn}{dx} = -\frac{4\alpha \eta(d_p)}{\pi(1-\alpha)D_f} n$$
where α : solid fraction of the bed $= 1-\varepsilon$
 D_f : fiber diameter
 $\eta(d_p)$: single fiber collection efficiency

 $n(d_p) = n_{diffusion} + n_{impaction} + n_{interception} + n_{elctrostatic} + \dots$

Given by semiempirical equation

Integration

$$G(d_p) = 1 - \frac{n(L)}{n_0} = 1 - \exp\left[-\frac{4an(d_p)L}{\pi(1-a)D_f}\right]$$

2) Bag (fabric) filters - surface filters

Filter media : cylindrical bag type

L/D ratio ~ 20, D ~ 120-150mm

High solid loading $\sim g/m^3$

Particle collection mechanisms

- Firstly, collection on individual fibers
- Secondly, filtration by *particle cake*

Collection Efficiency

$$G(d_p) = 1 - \exp^{-aW}$$

where W: Dust mass per unit bag surface area,

Areal density, Kg/m²

 $W = C_i V t$

- C_i : Inlet dust loading, kg/m³
- t: Operation time since last cleaning
- V : Gas-to-cloth ratio

$$V \equiv \frac{Q}{A}$$

a : Cake penetration decay rate

Pressure drop

For shaking and reverse-flow filters

 $\Delta p(t) = S(t) V$ where S(t): Drag through the fabric and cake $S(t) = S_e + K_2 W(t) = S_e + K_2 C_i V t$ S_e , K_2 : fn(properties of fabric and dust, respectively)

Cleaning methods

Fabric filter는 정해진 압력강하 이상이 얻어지면 퇴적 먼지를 털어 내어 제거하고 다시 재사용된다. Cleaning횟수는 1000회 정도 반복.

제거방법

- shaker (vibrator), reverse flow, pulse jet
- use of *cleaning ring*

Device Gravitational settler Cyclone	Minimum particle size (μm) >50 5-25	Efficiency (%) (mass basis) <50 50-90	Advantages Low-pressure loss Simplicity of design and maintenance Simplicity of design and maintenance Little floor space required Dry continuous disposal of collected dusts	Disadvantages Much space required Low collection efficiency Much head room required Low collection efficiency of small particles Sensitive to variable dust loadings and flow rates
			Low-to-moderate pressure loss Handles large particles Handles high dust loadings Temperature independent	
Wet collectors Spray towers Cyclonic Impingement Venturi	>10 >2.5 >2.5 >0.5	<80 <80 <99	Simultaneous gas absorption and particle removal Ability to cool and clean high- temperature, moisture-laden gases Corrosive gases and mists can be recovered and neutralized Reduced dust explosion risk Efficiency can be varied	Corrosion, erosion problems Added cost of wastewater treatment and reclamation Low efficiency on submicron particles Contamination of effluent stream by liquid entrainment Freezing problems in cold weather Reduction in buoyancy and plume rise Water vapor contributes to visible
Electrostatic precipitator	<1	95-99	99+% efficiency obtainable Very small particles can be collected Particles may be collected wet or dry Pressure drops and power requirements are small compared with other high-efficiency collectors Maintenance is nominal unless corrosive or adhesive materials are handled Few moving parts Can be operated at high temperatures(573 to 723 K)	conditions Relatively high initial cost Precipitators are sensitive to variable dust loadings or flow rates Resistivity causes some material to be economically uncollectable Precautions are required to safeguard personnel from high voltage Collection efficiencies can deteriorate gradually and imperceptibly
Fabric filtration	<1	>99	Dry collection possible Decrease of performance is noticeable Collection of small particles possible High efficiencies possible	Sensitivity to filtering velocity High-temperature gases must be cooled Affected by relative humidity (condensation) Susceptibility of fabric to chemical attack

Summary of Particulate Collection