Chemical Engineering Thermodynamics II

Department of Chemical Engineering

Prof. Kim, Jong Hak

Chapter 10. VLE: Introduction

- Preceding chapters: pure substance or constant composition mixture
 - composition changes: the desired outcome => a primary variable
- Process (distillation, absorption and extraction) bring phase of different composition into contact, and when the phase are not in equilibrium mass transfer b/w the phase alters their composition.
- Both the extent of change and the rate of transfer depend on the departure of the system from the equilibrium.

10.1 The Nature of Equilibrium

- Equilibrium is a static condition in which no changes occur in the macroscopic properties of a system w/ time
 - => At the microscopic level, conditions are not static.
 - => The molecules comprising a phase at a given instant are not the same molecules that later occupy the same phase.
- Measure of composition
 - Measures of composition: mass fraction, mole fraction, molar concentration
 - Mass or moles fraction: the ratio of the mass or number of moles of a species in a mixture to the total mass or number of moles

$$x_i \equiv \frac{m_i}{m} = \frac{\dot{m}_i}{\dot{m}}$$
 or $x_i \equiv \frac{n_i}{n} = \frac{\dot{n}_i}{\dot{n}}$

Molar concentration: the ratio of mole fraction of particular chemical species in a mixture or solution to the molar volume of the mixture.

$$C_i \equiv rac{x_i}{V}$$
 For flow process $C_i \equiv rac{\dot{n}_i}{q}$

(molar mass) $M = \sum x_i M_i$ => molar mass of a mixture is the mole fraction-weighted sum of the molar masses of all species present

10.2 The Phase Rule

- Number of variable to be independently fixed in a system at equilibrium
 the difference b/w the total number of variables that characterized the intensive state of the system and the number of independent equations.
- O Intensive state of a PVT system w/ N species and π phase in equilibrium : characterized by the intensive variable, T, P, N-1 mole fraction each phase
 - => Number of phase-rule variable : $2+(N-1)\pi$ (1)
- phase equilibrium equations

$$G_i^{\alpha} = G_i^{\beta} = \dots = G_i^{\pi}$$

For N species, Number of independent phase-equilibrium eq.

: (
$$\pi$$
-1) N – (2)

The difference b/w (1) and (2)

$$= 2 + (N - 1)^{2} - (\pi - 1)N = 2 - \pi^{2} + N$$
 (Gibbs phase rule)

■ Duhem's theorem :

- closed systems at equilibrium
- extensive state and the intensive state is fixed 2+(N-1) π
- intensive phase-rule variable, π extensive variables
 - \Rightarrow Total number of variables = 2 + N π
- Material balance equation for N chemical species
 - => Number of independent Eq. = $(\pi-1)N + N = \pi N$
 - => Difference : 2 + N π N π = 2 [mass is variable]

"For any closed system, the equilibrium state is completely determined when any two independent variables are fixed."

10.3 VLE : Qualitative Behavior

- VLE : the state of coexistence of liquid and vapor phase.
- \bigcirc System comprised of two species (N=2), F = 4 π \leq 3
 - => system can be represented in 3D graph (P, T, composition)

Figure 10.1

P-T-composition surface equilibrium state of saturate vapor and saturated liquid for species 1 and 2 of a binary system.

- \bigcirc The under surface contains the saturated vapor state (P-T-y₁) The upper surface contains the saturated liquid state (P-T-x₁)
 - => Intersect along the line RKAC₁ and UBHC₂ which represent the vapor P vs T curve for pure species
- Critical Point (pure, various mixture of the two species)
 - => Highest T & P where a pure chemical species is observed to exist in VLE
 - critical locus: vapor and liquid become identical
 - super cooled, super heated region
 - coexistence of both liquid and vapor

- If start with liquid at F and reduce the pressure at const. T and composition.
 - First bubble point of vapor appears at point L
 which lies on the upper surface
- The state of vapor bubble in equilibrium in Equil w/ the liquid L is represented by a point on the under surface of the T, P of L
 - => Point V (Line LV is tie line)
- As the pressure is further reduced, more liquid is vaporized.
 - W is the point where last drop of liquid (dew) disappear => Dew point
- Because of the complexity of Fig 10.1, the detailed characteristics of binary VLE are usually depicted by 2D by cutting the 3-D diagram AEDBL: p-x-y diagram of const T.
- If the lines from several planes are projected on a single parallel plane,
 - -> 10.2(a)

Fig. 10.1 PTxv diagram for VLE

Fig. 10.2 (a) P-x-y plot for 3 T

- T_a: AEDBLA
- Horizontal lines -> tie line
- T_b & T_d lie between the two pure species T_c

Fig. 10.2 (b) T-x-y diagram

P_a -> KJIHLK

 $P_b \rightarrow between P_c$

 $P_d \rightarrow$ above P_c of both species \rightarrow island

Fig. 10.3 PT diagram

- UC₂, RC₁ are vapor-pressure curves for the pure species.
- Each interior loop represents the P-T
 behavior of saturated liquid and of saturated
 vapor for mixture of fixed composition
- P-T relation for saturated liquid is different from the saturated vapor of the same composition.
- This is in contrast w/ the behavior of a pure species, for which the bubble as dew lines coincide
- O critical locus

10.4 Simple models for vapor/liquid equilibrium

- Goal in VLE: to find by calculation the P, T, composition of phase
 - => needs the models for behavior of systems in VLE
 - => Two simplest are Raoult's law and Henry's law

Raoult's Law

- Assumption:
 - (1) Vapor phase is an ideal gas -> low pressure
 - (2) Liquid phase is an ideal solution -> species that comprise the system are chemically similar.

$$y_i P = x_i P_i^{\text{sat}} \qquad \text{(10-1)}$$

 $y_i P$; Partial pressure

Dew point & Bubble point calculation with Raoult's Law

Bubble P: calculate (y_i, P) given (x_i, T)

Dew P: calculate (x_i, P) given (y_i, T)

Bubble T: calculate (y_i, T) given (x_i, P)

Dew T: calculate (x_i, T) given (y_i, P)

=> Need iterative calculation

From eq (10.1)
$$\sum y_i P = \sum x_i P_i^{sat} \quad \Rightarrow \quad P = \sum x_i P_i^{sat} \quad \text{(BUBL P)}$$

$$P = x_1 P_1^{\text{sat}} + x_2 P_2^{\text{sat}} = x_1 P_1^{\text{sat}} + (1 - x_1) P_2^{\text{sat}} = P_2^{\text{sat}} + (P_1^{\text{sat}} - P_2^{\text{sat}}) x_1$$

=> P vs x_1 at constant T -> straight line connecting P_2^{sat} at x_1 =0 to P_1^{sat} at x_1 =1

 \bigcirc solve eq (10.1) for x_i

$$x_i = \frac{y_i}{P_i^{sat}}P$$
 summation $P = \frac{1}{\sum_i y_i / P_i^{sat}}$ (DEW P)

■ Henry's Law

- \bigcirc Application of Raoult's law to species i requires a value for P_1^{sat} at the temperature of application, therefore is not appropriate for species whose critical temperate is less than the temperate of application
- O For species present as a very dilute solute in the liquid phase, Henry' law then states that the partial pressure of the species in the vapor phase is directly proportional its liquid-phase mole fraction

$$y_i P = x_i H_i$$

10.5 VLE by modified Raoult's Law

■ Modified Raoult's Law: when 2nd assumption is abandoned and account is taken of deviations from solution identity in the liquid phase

$$y_i P = x_i \gamma_i P_i^{sat} \qquad \qquad \gamma_i \ : \text{activity coeff.}$$
 Example 10.3
$$P = \sum_i x_i \gamma_i P_i^{sat} \qquad P = \frac{1}{\sum_i y_i / \gamma_i P_i^{sat}}$$

10.6 VLE from K-value correlations

O Tendency of chemical species to partition itself preferentially between Liquid/Vapor equilibrium ratio K_i, defined as $K_i = \frac{y_i}{x_i}$

If Ki > 1 -> higher concentration in the vapor phase

Raoult's Law:
$$K_i = \frac{P_i^{sat}}{P}$$
 modified Raoult's Law: $K_i = \frac{\gamma_i P_i^{sat}}{P}$

Flash calculation

- Reduction of pressure from bubble point => produce two phase system of V/L
- For Flash Calculation => Calculations of the quantity and compositions of the vapor/liquid consisting of two phases.
- Consider a system
 - **▶ one mole** of nonreacting chemical species
 - \triangleright Overall composition \Rightarrow Z_i
 - ▶L: moles of liquid, V: moles of vapor
- \bigcirc For species i, overall composition $Z_i = x_i L + y_i V$

$$Z_i = x_i(1-V) + y_iV$$
 by eliminating L

Substitute
$$x_i = y_i / K_i$$
 and solving for y_i $y_i = \frac{z_i K_i}{1 + V(K_i - 1)}$

Since
$$\sum_{i} y_{i} = 1$$
 $\sum_{i} \frac{Z_{i}K_{i}}{1 + V(K_{i} - 1)} = 1$

