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Solution Thermodynamics : theory

H Objective

: lay the theoretical foundation for applications of thermodynamics to gas
mixture and liquid solution

O Most of chemical process undergo composition changes by mixing separation.
=> compositions become essential variable along with T and P.

O Fundamental property relation become more comprehensive than eqn. (6.10)
dG = VdP - SdT.

F YOMSE] UNIVERSITY

3y ATt




11.1 Fundamental Property Relation

O Eqgn. (6.6) dinG) = (nVIdP - (nS)dT for closed system of single phase

onG). onG)
5p . =0V and | p lIp, =-nS

[

O For a single-phase, open system
nG=f(P, T,n,n,,....)

o ) P+ [<—G1pndT

d(nG) = . dn

i

By definition chemical potential of species i in the mixture

I YRAGSY (11.1)

]P,T,nj dni

i

5.d(nG) = (nV)dP-(nS)dT + X pdn,  (112)
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For special case of one mole of solution n=1, n, = x;

dG = VdP-SdT + 2. pdx, (11.3)

i

S.G=G(T,P, X, Xy seeeens X o)

From (11.3) G G

V (—)T X S = (—)P,x

H=G+TS = GT( )PX

% @ibbs energy plays a role of a generating function, providing the means for
calculation of all other thermodynamic properties by simple mathematical
operations.

£3) M|t

F YOMSE] UNIVERSITY



11.2 The Chemical Potential and Phase Equilibria

M Closed systems consisting of two phase in equilibrium
each individual phase is open to the other => mass transfer occur b/w phases

Eqn.[11.2) applies to each phase
d(nG)* = (nV)*dP- (nS)*dT = 2. pu’dn®
d(nG)" = (nV)*dP-(nS)*dT = 2 p’dn’

Because two phases are in equilibrium -> T and P is uniform
Change of total Gibbs energy = sum of two equation d(nG)* +d(nG)"

d(nG) = (nV)dP- (nS)dT + 2 u’dn® + 2 pldn’
(nM = (nM)* + (nM))

at equilibrium > %4 + X puPdn® =0

1

by mass conservation, dn{ +dn? =0

2 (uf -p)dn =0
33 o1 4ot
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At equilibrium 2 of each phase is same (u = pb)

Thus, multiple phase at same T&P are in equilibrium when the chemical potential of
each species is the same in the all phase

W=l ==y (i=123...,N)

(11-6)
3y ATt
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11.3 Partial Properties

W Partial property M, is defined by

o(nM)
an ]P,T,nj

i

(11-7)

M, =[

Chemical potential is partial molar property of Gibbs Energy

2(nG)
on

by = ( )P,T,nj = 61

% Equations relating Molar and Partial molar properties

O From the knowledge of the partial properties, we can calculate solution
properties or we can do reversely.

O Total thermo properties of homogeneous phase are functions of T, P and the
numbers of moles of the individual species which comprise the phase

nM:M(T,P,nl,nz, ..... ,ni)
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The total differential of nM is

_ o(nM) 0(nM) o(nM)
d(M) =[— =y dP+[— =], ,dT + iZ[ o Tor.o dn,

o) = 0™ b ™) are SMa
(nM) = n( p )1 AP +n( 8T)P’X + & Mdn;  (11-9)

1

n, = x,n — dn, = x,dn + ndx,
d(nM) =ndM + Mdn

, oM oM S
-.ndM + Mdn = n(é—P)T’X dP + n(ﬁ)P’X dT+ 2 M. (x,dn +ndx;)




The terms containing “n” are collected separated from those containing dn to yield

[dM - (—)TXdP( )PXdT 2 M.dx, Jn+[M- ZxM]dn 0

M
. dM = (—)TXdP+(—)PXdT+ Zde (11-10)

M= 2 x.M, (11-11)

Multiply Egn.[(11.11]) by n vield

nM= 2nM, (11-12)

i

(11.10) -> special case of Eqn (11.9) by setting n=1
(11.11), (11.12) -> summability relations
=> allow calculation of mixture from partial property

(0) Rl L8 feigm|
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From Egn (11.11) M= 2 x M,

dM= 2 x,dM, + 2 M,dx,  Compare this with [11.10]

(—)TXdP+(—)PXdT Zde =0  ([11-13)

=> Gibbs/Duhem equation

atconstT,P > x,dM, =0 (11-14)

i

(0) Ralallu kel
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B Rationale for partial property

M= 2 x,dM, => Solution property is sum of its partial properties

IimM = hmM =M. (in the limit as a solution become pure in species i

x;—1 x;—1

By definition lim M, = M;”

B Summary of partial property
a(nM)

1. Definition M. = => yield partial properties from total property

]P,T,nj
1

2. summability M = Z Xiﬁi => yield total properties from partial properties

i

oM
3. Gibbs/Duhem X x.dM, —(—)TXdP+( T

1

=> partial properties of species in solution => dependent one another
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M Partial properties in binary solutions

For binary solution (system), From summability relations M= 2 x.dM,
M=xM +x,M, ®@ = dM=x,dM, +Mdx, +x,dM, +M,dx, ®
at constant T, P by Gibbs/Duhem Egn.
deE + deM—2 =0 @
Because X;+X,=1, dx;=-dX,, Eliminating dx,in EQ ()

dM = deﬁl +EdX1 + deM—z -M—del by Egn (c)

- - d -
dM = Mldxl —MdeI .. d— = M1 —M2 (d)
X

FromEgn @ M =(1-x,)M, +x,M, =M, -x,(M, -M,)

M=xM, +(1-x)M, =M, +x,(M, -M,)

_ dM dM
insertkEan @ M, =M+x,—  M,=M-x,— g
X4

X1
So, from the solution properties as a function of compaosition (at const T, P)
=> Partial properties can be calculated (0) RaLille feiom!
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G/D can be written in derivative form

dM dM N N
Xl 1 +X2 2 =O dM1 =_X2 dM2
dx, dx, dx, X, dx,

=> When M, &M, are plotted vs X; => sign of slope is opposite

Moreover from this Equation

dM. dM.,
lim—L =0 lim—=%=0
x;—1 Xm ’ X, 1 Xm

=> Plots of M, and M, VS X, => horizontal as each species approach purity

(0) Rl 18 kelm
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B Relations among partial properties

d(nG) = (nV)dP - (nS)dT + 2 p.dn, =G
= d(nG) = (nV)dP - nS)dT + 2 G.dn,

ADDW criterion of exactness for differential expression

d(nV) —
(—)Pn= ( )Tn =_( :>V

ani )P,T,nj 1
J(nS)
=( n )P,T,nj

i

-7,

% Property relations used in const. composition solution has their counterpart
eqguations for partial properties

For example, H=U+PV, for n mole
nH = nU + P(nV)

Differentiation with respect to n; at const T, P, n,

d(nH) d(nU) d(nV) -
[ on ]P,T,nj=[ on ]P,T,nj+P[ on ]P,T,nj = H; =U; +PV,

i i i

dG, = V.dP-SdT

(0) Ralallu kel
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11.4 Ideal Gas Mixtures

 |deal gas mixture model : Basis to build the structure of solution thermodynamics

RT

Molar volume of Ideal Gas: V = S

=> All ideal gas, whether pure or mixture have same
molar volume at the same T, P

s Partial molar volume of species i in ideal gas mixture

Vi =l—F—hs, =1

—ig _ O0(nV*) 8(nRT/P)]_RT( an) _RT
on, P on, = P "on’" P

since n=n, + an

=> partial molar volume = pure species molar volume = mixture molar volume

VE =y Z v o L
l P

€3} M|t
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Partial pressure of ideal gas for n mol of ideal gas

nRT
—_ Vt
. . anT . t t = .
for speciesi, F=—; [since V' = V! inideal
LN P, = yP
P n 7 chEY

In ideal gas, thermodynamic properties independent of one another

* Gibbs theorem
A partial molar property (except volume) of a constituent in an ideal gas mixture is
equal to the corresponding molar property of the species as a pure ideal gas but
at a pressure equal to its partial pressure

M (T,P)=M¥(T,P)  (1121)

(0) Ralal|H feigm|
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% H of Ideal Gas => independent of P
H=C,dT
. Hi (T,P) = H¥(T,P) = H*(T,P)

SHf=H® -0 (11.22)

% S of an ideal gas —> dependenton P and T

. dT _dp
ds* =C~—-R—-  (620)

, dP
atconstT. dS7 =-RdlnP=-R-
| | P P
Integration from P, to P S#(T,P)-S#(T,p,) = —Rlnp— = —Rlnﬁ =RIny,
. SE(T,p,)=S*(T,P)-Rlny, Since, S:’(T,P)=S¥(T,P) Gibbs theorem

§ig = S;g -Rlny, -> ® (11.23)
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For the Gibbs Energy of ideal gas mixture

G =H®*-TS*=G"* =H"-TS;*

G =H®-TS®+RTIny, [byusing egn. ® @]

or W¥=G° =Gt +RTIlny, >© (11.24)

By summability ean (M= 2x,M,)

H = Zy.H%g > ®

S* = Z Yisig -R Z y; Iny; 2 ®
G®= X yG:+RT Xy Iny - ®

eH®- 2y HE [enthalpy charge of mixing) = 0

=> no heat transfer for ideal gas mixing

i i 1
eSE_ D ySE=R Xy lny— lentropy charge of mixing) > 0

=> agree with second law, mixing is irreversible
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Alternative expression for p*
dG* = V*dP-S*dT= VdP [at const T)
o . RT
".dGE = V5P = ?dP =RTdInP

By integration
G* =T,(T)+RTInP (11.28)

C.u® =T (T)+RTIn(y,P) (11.29)

Applving summability relation

S.G¥ = 2y [(T)+RT 2 y,In(y,P) (1130
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