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11.5 Fugacity & Fugacity Coefficient : Pure Species

LL. => - provides fundamental criterion for phase equilibrium
- not easy to apply to solve problem

Limitation of Egn (11.29) (G =H - TS)
P->0 or yi=>0 = p. —-9©  [whichis not true for ideal gas)

Ean (11.27) => valid only for pure species i in the ideal gas
For real gas, fugacity is introduced instead of P

G, =I(T)+RTInf,

G® =T,(T)+RTInP

. f : .
G,-Gf =RT lnE‘ = RTIn ¢, [ ¢, : fugacity coefficient]

GiR =RTIno, (11.33)
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For anidealgas, f*=P, G =0& ¢, =1

1

G} Gt P dP
In chapter 6, i = i = 1) —
D (eemo =) o ST+ J, @D >
R
IR = dmine =
, , f. _ . .t
setJaszero, limlne, =limln(—)=0 which means that lim¢, =lim—=1
P—0 P—0 P P—0 1 P—)OP
G P dP P dP
From egn (6.49) — jo(zi Do Ing, = VYO(Zi DY
- S IT BiiP
=> ¢, :obtained from PVT data or from compressibility factor z;-1="—
P B. B.. P B.P
Ingp, = —dP=— dP =—
0= J mr®=gr Jo9P =Ry
. B,P
..1lno. =
(Pl RT
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M Evaluation of fugacity coeff. from Cubic EQS

G® =RTIno, (11.33)

R

—=7-1-In(Z-B)-ql :
RT n(Z-B)-q (6.66)
S.Ine, =7Z-1-In(Z-B)-q,I, (11.37

a,(T)
= biRT (3.51]

where B—biP 3500 9
'TRT T 1

P
Z = oRT (1137

If, 0=c¢

_ p;b; _ B,
© 1+eBb, Z +¢B,

1

ZitSiBi

1

0. -¢.

1

In(

(6.65b)
Z.te B, )
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Bl Vapor-Liquid equilibrium for pure species

Consider vapor liquid equilibrium
For species i as a saturated vapor, using eqn(11.3)
G/ =T,(T)+RTInf (11.38a)

For species i as a saturated liquid
G| =T,(T)+RTInf/ (11.38D)

£
".dG =G/ -G; =RT In—7=0 atequilibrium

1

=1 =1 (£ : either saturated liquid or vapor)

1

Alternative formulation

fsat
sat __ i . v 1 __ _sat
(Pi _psat "(pi _(Pi_q)i

i

=> Criterion of VLE for pure species G, «,f, @
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B Fugacity of a pure liquid

— Fugacity of pure species i as a compressed Liq.
=> calculated from the product of easily evaluated ratio

fiv (]?isat ) fil (Pisat ) fil (P) o
Pisat fiV (Pisat) fil (Pisat) i
A B C

f'(P) =

at const T

t
Ratio A => vapor phase fugacity coeff., (Pisa at VLE

1

1 sat __ B | d_P
ne.” = J‘O (Zi_)P

RatioB=>1 since f'=f' atVLE
Ratio C => the effect of pressure on the fugacity of pure liquid ;
dG =VdP (6.10) atconst T
G,-G" = [ VP
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f
from (11-31) G, =T(T)+RTInf, ..G.- Gsat—RTlnfsat

. RTIn

sat

fi — j'zsat Vil dP

| £1(P) |
Ratio C. sat fpysaty GXp(— j‘ sat VildP)
£ (P RT J»

P

1
. 1 — A oeRe(eDsa 1 sat__sat .1
since f;(P)=Ae*B*CeP, f! =¢™p; exp(—RT j'PisatVldP)

Because Vi1 IS @ very weak function of P => assumed constant

f sat __ sat (V (P Psat))
cX
=0, Py p RT
L, Poynting factor
sat B.P B.p™
(O, :can be calculated from ZiV s Zi-l=—— ..¢" = EXP(——)

RT RT

Vil : value for saturated liquid

P™ : Antoine ean.
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11.6 Fugacity & Fugacity Coefficient : Species in Solution

For species i in @ mixture of real gas or in a solution of liquid

W, =L(T)+RTInf,  (1148)

A

f. :Fugacity of species i in solution (replacing partial pressure]

1

at equilibrium, the fugacity of each component is the same in all phases

A

fe=fl=...=f"

-> Multicomponent VLE, f =f}1
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M Residual property M~ =M-M?®

Multiply n and differentiate with respect to n; at constant T, P, n,

o(nM)"* d(nM) o(nM'®)
on ]P,T,nj = [T]P,T,nj - [T]P,T,nj

1 1 1

|
—R — g
= Mi - Mi - Mi

Written for 6, G; =G, -G;
From egn(11.29)
ue =G =T,(T)+RTIn(y,P)

u; =I,(T)+RTInf, (11.46]
- = RTlnf—iP, - =aiR [since p. =G; )
o A
.G =RTIno, (¢, =—)
y;P

®. :fugacity coeff. of species in solution

Foridealgas: G, =0 & %=1 =fet=yP _.
! ! ' g% A LS
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B The fundamental residual-property relation

d(nG) = (nV)dP- (nS)dT + 2y1.dn,

1 G _
d(nG)-——=dt  (G=H-TS

: d(nG) _
Alternative form d(4

~RT RT® dG = VdP-SdT)
nG nVvV nH 6
d(—) = dP - -dT + Z—ldni (11.54)
RT RT RT . RT

G
(II;—T) — Function of all of i canonical variable (T, P, n;]

=> Allow evaluation of all other thermodynamic properties

\Y H

G
compare (6.37) d(RT) = RT dP - _T dT

(o)

Special case of 1 mol of a constant-composition

=> Since we cannot evaluate absolute value of thermodynamic propertyes
=> use residual property
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For ideal gas

ig

nG* an nH'®
d(—) = 4 Zﬁdn
RT RT "RT

Subtracting this eqn from (11.54)

i

GR VR HR R
d(-——) = ——dP-——dT + Z—dn
RT’~ RT = RT

=> The fundamental residual-property relation

by introducing fugacity coeff. (G =RTIn¢,)

nG®  nV® HR

= T |
d(r) = dP-—d +an>dn
VR O(G®/RT) HR® d(G® /RT)
= = —=-T
RT [ oP L“’ZRT [ oT Je.

=> Use eqn (6.46), (6.48), (6.49) for the calculation

. 0(nG"/RT) N
Ing =| o lpr, = 10 ®; - partial property of
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For n mol of constant - composition mixture

nGR_ P 7 dp
RT = Jo0Z MG

Differentiation with respect to n; at constant T, P, n,

. P 0(nZ-n) dP
In ¢, = \YO[ 3nj ]P,T,nj ?

A p— dP
S ng, = yo(zi-n? [11.60)
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B Fugacity coefficients from the virial equation of state

Evolution of value of (TDi from EOS

. - P dP
Simplest form of virialean  Inog = jo (z-D)0 1160

BP . .
7= 1+ﬁ (3.38] where B=f(T) composition second virial coeff.

B= 2 Zyiijij (11.61)  where By : characterize bimolecular interaction
b b/wiand j [Bii = Bii]
For binary mixture
B = V41¥1B11 + V1VoB12 + ¥o¥1By + VoVoByy
= ¥2,By1 + 2Y,¥1Byy + V2,By, (11.62)

(B11, Byo) - virial coeff. of pure species
(B45) : cross coeff (mixture property)

For n mol of binary gas mixture egn(3.38) becomes

nBP
nZ=n+—

RT (0) L3 18 keigm|
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Differentiation with respect to n,
—  d(nz) P 0(nB)
= =1
“1 [ 8n1 ]P’T’n2 ¥ RT[ 8111 ]T,n2

From eqn (11.60)

e < L (7 00B) P oB)
PP RT Job gn, T RTY g, T

Second virial coeff. can be written
B =Vvi(1 - V5IBy1 + 2V,V5B15 + Vo[1 — V41By,
= ¥1B11 = Vqi¥2Byq + 2V1¥5B12 + VoBo — V1¥5B2o
=ViBq1 + VoBoy + V1¥28 12 842 = 2Byy - Byy - By,

n,n,

since y; = n; / n, multiplying by n nB=nB, +n,B,, + 0,5
n
by differentiation
3(11]3) 1 n1 2
| on lrn, =B, + (H_n_)n2812 =B, +(1-y,)y,0,, =B, +y30,,
1 2

. A P 2
S Ing, = E(Bn +Y50,,)

- - A P
by similar method ~ In$, = —— (B, +y73,) Q) et
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For multicomponent gas mixture, the general edns.

R P 1
Ing, = ﬁ[Bkk +E 12 JZYin(ZSik -0;)]
0, =2B; -B;-B,, 0; =0 Oy = Oy
8ij EZBij -B.. -Bjj 0, =0
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11.7 Generalized Correlations for the Fugacity Coefficient
To calculate®, use Generalized methods for compressibility factor Z

Correlationfor 7z =7 +wz' (357

where o =-1.0-log(P™),,-
Eqn (11.35) N | |
antil. Ing, = j“o(z-l)? [const T) transformed into generalize form
. N Py dPr
using P=PP,, dP=PdP, =".In® = | (z-D5" (1168

Using ean (3.57]

Pr dP. p, dP
Inp = j‘o (z"-1) p + J‘O z' p

r r

=Ine=In¢" +wlne'= Three parameter generalized correlation for @

S0 =(0")(9)°= use table E13 ~ E14

(0) Ralallu kel
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Using Pitzer correlations for the second virial coeff.

A PI' A
Z=1+ B? (3.61) B =B’ +»B' (3.63)
. Pr 0 1 - -
S Z-1= ?(B +wB') => Insert into egn(11.15) and integrate

T

_5 0 1 - 5 0 1
ln(p—T (B +oB ):>(p—exp[T (B"+0B )]

0.422 0.172
where B? =0.083- 16 B' =0.139- T2

r T

B Generalized correlations for fugacity coefficient in gas mixture

P 1
Ind, =By + 2 228, -5,)]
b Trij =T/ TCij

A

More general form for coeff. B, =B’+o,B' = B%B'->function of Ty,

1

B.P.-. _ _ .
B =1 Cij (11.69] =>use Prausnitz’s combining rule for the

1 RTCij Ca|CU|at|0n Of O)ij’TCij,RCij

(0) Ralal|H feigm|
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o, = 12 L1170 T, = (T,T,)"*(-k,) (1171
z;RT; Zi +Z
Py=—y (11.72) Zg=" 5 17

cij

Where k;; = empirical interaction parameter

if i=] and for chemically similar species k;=0 —> all eans reduce
to value for pure species

Procedure to obtain @,
@ Find value of By from (11.69]
@ ingert Bij into ean(11.61) B= X Xy,y B,
i J
@ using eqgn(11.14) Ing, —R—[B +§ Z Zy yJ(261k SU)] =>find B
obtain ¢ value of In@, L

value of the pure-species virial coeff. B, B; for ean

BP.

=B’ + B’
RT.

B=

) Aot
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10-8. The ideal solution model

Definition : - all molecules are of the same size
- all forces b/w molecules (like and unlike) are equal

The chemical potential from ideal-gas mixture model
WE =G =G*(T,P)+RTIny, (1124)

=> Only applicable for ideal gas

replace G}g (T,P)= G,(T,P) [(Gibbs energy of pure i in its real physical state
of gas liquid, solid)

B chemical potential of an ideal solution

u* =G =G,(T.P)+RTInx, (11.75)
=> applicable gas, liquid, solid
—id

. =V,
From eqn(11.18) ( P )T x
V“—(a_i —(aaﬂ =V v
1 = aP T,x — 8P T~ i . 'Vi p—t Vi [1176]
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From eqn(11.19)

Sid aGi 0G

For H', Hi =G; +TS® , using (11.75) (11.77)
Hi =G, +RTInx, +TS, - RTlnx,
=G, +TS, =H,

by summability relation, M= 2x,M;

G" = ZXG +RT Zx nx,

ZX S. -R ZX Inx,
ZX V.
= inVi JHY = ZXiHi

= _(a—Ti)p -Rlnx; =S, -RlInx,

(11.77)

(0) Rl ki
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B The Lewis / Randall Rule
Fromean (11.46) p. =T(T)+RTInf, (1131] G, =T(T)+RTInf,

1

A .
id
i

f

(11.46-1131) => p=G; =G, +RTIn(-—)

1

For the special case of an ideal solution
f
u, =G, +RT ln(f—‘)
If compared with egn(11.75) 1 =G, +RTInx,

ffd =x.I. [11.83) => Show the composition dependence of the
fugacity in an ideal solution (Lewis/Randall rule)

Lewis/Randall Rule : fugacity of each species < mole fraction
proportional constant = fugacity of pure species i

Alternative form of Lewis/Randall Rule : " §* = o,

er . (11-81)
(divide 11.83 with Px) -

Fugacity coeff. of species i in an ideal solution

= fugacity coeff. of pure Species | N o1 4|k
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11.9. Excess Properties
Recall the relation b/w  G*,¢.,®. and PVT data

G (-1 L e
= Z. - — .
RT Jo "7 /p

P dP R P — dP
ln(pi=j0(zi-1)? [11.35) ln(pi=j0(zi-1)? [11.60)

—> obtain thermodynamic property using Residual properties

In the case of liquid, measure the departure from ideality not from ideal gas, but
from ideal solution => excess property

Mathematical formulation
ME =M -MH (Difference b/w actual property and ideal solution)

For example, G =G-G“, H*=H-HY, S*=S-S", GE=H"-TS"
considering MR~ =M-M"* Pure species MF =0
ME _MR — _(Mid _Mig)

lideal gas mixture => ideal solution of ideal gas] G® = Zx G +RT Zx In X,
-zjj“'-;- o 4|l St al
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Compare M*® and M™

H* = ZyiHig H" = ZXiHi
= EyiS§g -R Zyi Iny, SH = inSi -R in Inx,
G* = Zinig -RT Zyi Iny. G = inGi -RT in In x,

SLME M = ZxM Zng ZxMR

M“-M* => MR “MP ME = MR- 2k MR
* Excess Property - applied to only mixture
Residual property : applied to both pure species & mixture

For partial excess property: M; = M; -M;

** Fundamental excess—property relation
—E

GFE \& HE G;
d() = ——dP-———dT + Xr—dn,
RT’_ RT = RT ~RT

=> Similar to fundamental residual-property relation

F YOMSE] UNIVERSITY
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B The Excess Gibbs Energy and the Activity Coefficient
From ean (11.46) . =T,(T)+RTInf, G =I,(T)+RTInf,

From Lewis/Randall rule, for an ideal solution

G =T(T)+RTInf“ =L (T)+RTInxf,

Difference  G..G" =G = RTIn—_
x.f

11

activity coefficient (y,) = Xif (11900  ..G| =RTlny, (11.81)

11

—R

G; =RTIn ¢, , for ideal solution GiE =0,y, =1
To device chemical potential of mixture

G -Gi =RTIny, G; =G, +RTInx, 1175  G; =G, +RTInyx, [11.92)

Comparison of three equations defining chemical potential

wt=G*+RTIny, (11.24) _ .
| ‘ 1SLEQn : ideal gas mixture model
w'=G +RTInx, (11.75) 2"d Egn : ideal solution model

THE G +RTInyx; (1192

F YOMSE] UNIVERSITY
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B Excess-property Relation

In fundamental excess property relation
nG* nVE nHE"

d(—=)=——dP-——dT + Z
RT" RT RT RT
IlV nHE Z —E
= RT RT? —dT + i Iny.dn.(G =RTIny,)
. VP o a(GE/RT)] H" - a(GE/RT)]
"RT p T (1190, oo =- 5T px [11.91)
=) Effect of T, P on the G"
E ] ] GR
lnYi — a(nGa /RT)]an (11.96) => In v - partial properties of n—
n. o ;

1

=> Similar to eqn for Residual property

¢ Difference : in the case of relation to GF -> we can use experimental PVT
data ~ EOS to calculate Residual property

VE H",y, =» Can be obtained by experiment

[ Yi :from VLE data
vE HF :from mixing experiment

F YOMSE] UNIVERSITY
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: . G" G
Invy, :partial property of —, ..lny =—
RT ' RT
Vi ol H@ ol
R £ 1 -7/ A ML £
RT = op "™ RT? oT "~

=) Effect of T, D on the Y,

From the summability ean M = > x. M,
E

— = Zx.ln. 11
RT ny. o (11.99)

From Gibbs/Duhem ean (at const T, P} > x.dM; =0

2 xdlny, =0

1

(11.98)
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