Thermodynamics II

Department of Chemical Engineering

Prof. Kim, Jong Hak

11.5 Fugacity & Fugacity Coefficient: Pure Species

- $\mu_i \Rightarrow$ provides fundamental criterion for phase equilibrium
 - not easy to apply to solve problem

Limitation of Egn (11.29) (G = H - TS)
$$P \to 0 \quad \text{or} \quad y_i \to 0 \quad \Rightarrow \quad \mu_i \longrightarrow -\infty \qquad \text{(which is not true for ideal gas)}$$

Egn (11.27) => valid only for pure species i in the ideal gas

For real gas, fugacity is introduced instead of P

$$\begin{split} G_i &\equiv \Gamma_i(T) + RT \ln f_i \\ G_i^{ig} &= \Gamma_i(T) + RT \ln P \\ G_i - G_i^{ig} &= RT \ln \frac{f_i}{P} = RT \ln \phi_i & \text{ (ϕ_i : fugacity coefficient)} \\ & \therefore G_i^R = RT \ln \phi_i & \text{ ($11.33)} \end{split}$$

For an ideal gas,
$$f_i^{ig} = P$$
, $G_i^R = 0 \& \phi_i = 1$

In chapter 6,
$$\left(\frac{G_i^R}{RT}\right)_{P=0} = J$$
, $\frac{G_i^R}{RT} \equiv J + \int_0^P (z_i - 1) \frac{dP}{P}$

$$\lim_{P \to 0} \left(\frac{G_i^R}{RT} \right) = \lim_{P \to 0} \ln \phi_i = J$$

 $\text{set J as zero,} \quad \lim_{P \to 0} \ln \phi_i = \lim_{P \to 0} \ln (\frac{f_i}{P}) = 0 \quad \text{ which means that } \quad \lim_{P \to 0} \phi_i = \lim_{P \to 0} \frac{f_i}{P} = 1$

From egn (6.49)
$$\frac{G_i^R}{RT} = \int_0^P (z_i - 1) \frac{dP}{P}, \ln \phi_i = \int_0^P (z_i - 1) \frac{dP}{P}$$

=> ϕ_i : obtained from PVT data or from compressibility factor $z_i - 1 = \frac{B_{ii}P}{RT}$

$$\ln \varphi_{i} = \int_{0}^{P} \frac{B_{ii}}{RT} dP = \frac{B_{ii}}{RT} \int_{0}^{P} dP = \frac{B_{ii}P}{RT}$$

$$\therefore \ln \varphi_{i} = \frac{B_{ii}P}{RT}$$

■ Evaluation of fugacity coeff. from Cubic EOS

$$G_i^R = RT \ln \phi_i$$
 (11.33)
$$\frac{G^R}{RT} = Z - 1 - \ln(Z - \beta) - qI$$
 (6.66)

$$\ln \varphi_i = Z - 1 - \ln(Z - \beta) - q_i I_i$$
 [11.37]

where
$$\beta_i = \frac{b_i P}{RT}$$
 (3.50)
$$q_i = \frac{a_i(T)}{b_i RT}$$
 (3.51)
$$I_i = \frac{1}{\delta_i - \epsilon_i} ln(\frac{Z_i t \delta_i \beta_i}{Z_i t \epsilon_i \beta_i})$$
 (6.65b)
$$Z_i = \frac{P}{\rho_i RT}$$
 (11.37)

If,
$$\delta = \varepsilon$$

$$I_{i} = \frac{\rho_{i}b_{i}}{1 + \varepsilon_{i}\beta_{i}b_{i}} = \frac{\beta_{i}}{Z_{i} + \varepsilon_{i}\beta_{i}}$$

■ Vapor-Liquid equilibrium for pure species

Consider vapor liquid equilibrium

For species i as a saturated vapor, using eqn(11.3)

$$G_i^{v} = \Gamma_i(T) + RT \ln f_i^{v} \qquad (11.38a)$$

For species i as a saturated liquid

$$G_i^1 = \Gamma_i(T) + RT \ln f_i^1 \qquad (11.38b)$$

$$\therefore dG = G_i^{v} - G_i^{l} = RT \ln \frac{f_i^{v}}{f_i^{l}} = 0$$
 at equilibrium

$$f_i^v = f_i^1 = f_i^{sat}$$
 (f_i^{sat} : either saturated liquid or vapor)

Alternative formulation

$$\varphi_i^{\text{sat}} = \frac{f_i^{\text{sat}}}{p_i^{\text{sat}}} \qquad \therefore \varphi_i^{\text{v}} = \varphi_i^{\text{l}} = \varphi_i^{\text{sat}}$$

=> Criterion of VLE for pure species G, μ , f, ϕ

Fugacity of a pure liquid

- Fugacity of pure species i as a compressed Liq.
 - => calculated from the product of easily evaluated ratio

$$f_i^1(P) = \frac{f_i^v(P_i^{sat})}{P_i^{sat}} \frac{f_i^1(P_i^{sat})}{f_i^v(P_i^{sat})} \frac{f_i^1(P)}{f_i^1(P_i^{sat})} P_i^{sat}$$
at const T
$$A \qquad B \qquad C$$

Ratio A => vapor phase fugacity coeff., ϕ_i^{sat} at VLE

$$\ln \varphi_i^{\text{sat}} = \int_0^{P_i^{\text{sat}}} (z_i^{\text{v}} - 1) \frac{dP}{P}$$

Ratio B => 1 since $f_i^v = f_i^l$ at VLE

Ratio C => the effect of pressure on the fugacity of pure liquid;

$$dG = VdP$$
 (6.10) at const T

$$G_i - G_i^{sat} = \int_{p_i^{sat}}^p V_i dP$$

from (11–31)
$$G_{i} = \Gamma_{i}(T) + RT \ln f_{i} \qquad \therefore G_{i} - G_{i}^{sat} = RT \ln \frac{f_{i}}{f_{i}^{sat}}$$
$$\therefore RT \ln \frac{f_{i}}{f^{sat}} = \int_{p_{i}^{sat}}^{p} V_{i}^{l} dP$$

Ratio C,
$$\frac{f_i^1(P)}{f_i^{sat}(P_i^{sat})} = \exp(\frac{1}{RT} \int_{P_i^{sat}}^{P} V_i^1 dP)$$

since
$$f_i^1(P) = A \cdot B \cdot C \cdot P_i^{sat}$$
 $f_i^1 = \phi_i^{sat} p_i^{sat} \exp(\frac{1}{RT} \int_{P_i^{sat}}^{P} V_i^1 dP)$

Because V_i^1 is a very weak function of P => assumed constant

$$\therefore f_i^1 = \phi_i^{sat} p_i^{sat} \exp(\frac{V_i^1 (P - P_i^{sat})}{RT})$$
Poynting factor

$$\phi_i^{\text{sat}}$$
 : can be calculated from Z_i^{v} , $Z_i - 1 = \frac{B_{ii}P}{RT}$ $\therefore \phi_i^{\text{sat}} = \text{EXP}(\frac{B_{ii}P_i^{\text{sat}}}{RT})$

 V_i^l : value for saturated liquid

 P_i^{sat} : Antoine eqn.

11.6 Fugacity & Fugacity Coefficient: Species in Solution

For species i in a mixture of real gas or in a solution of liquid

$$\mu_{i} \equiv \Gamma_{i}(T) + RT \ln \hat{f}_{i}$$
 (11.46)

 $\hat{f}_{\rm i}$: Fugacity of species i in solution (replacing partial pressure) at equilibrium, the fugacity of each component is the same in all phases

$$\hat{\mathbf{f}}_{i}^{\alpha} = \hat{\mathbf{f}}_{i}^{\beta} = \ldots = \hat{\mathbf{f}}_{i}^{\pi}$$

-> Multicomponent VLE, $\hat{f}_{i}^{\mathrm{v}} = \hat{f}_{i}^{\mathrm{l}}$

Residual property $M^R = M - M^{ig}$

Multiply n and differentiate with respect to n_i at constant T, P, n_i

$$[\frac{\partial (nM)^{R}}{\partial n_{i}}]_{P,T,n_{j}} = [\frac{\partial (nM)}{\partial n_{i}}]_{P,T,n_{j}} - [\frac{\partial (nM^{ig})}{\partial n_{i}}]_{P,T,n_{j}}$$

$$\Rightarrow \overline{M}_{i}^{R} = \overline{M}_{i} - \overline{M}_{i}^{ig}$$

Written for G, $\overline{G}_i^R = \overline{G}_i - \overline{G}_i^{ig}$

From egn(11.29)

$$\begin{split} &\mu_i^{ig} = \overline{G}_i^{ig} = \Gamma_i(T) + RT \ln(y_i P) \\ &\mu_i = \Gamma_i(T) + RT \ln \hat{f}_i \qquad \text{(11.46)} \\ &\mu_i - \mu_i^{ig} = RT \ln \frac{\hat{f}_i}{y_i P}, \quad \mu_i - \mu_i^{ig} = \overline{G}_i^R \quad \text{(since } \mu_i \equiv \overline{G}_i \text{)} \\ &\vdots \overline{G}_i^R = RT \ln \hat{\phi}_i \qquad (\hat{\phi}_i = \frac{\hat{f}_i}{y_i P}) \end{split}$$

 $\phi_i \quad : \text{fugacity coeff. of species in solution}$

For ideal gas : $\overline{G}_i^R = 0$ & $\hat{\phi}_i^{ig} = 1$ $\Rightarrow \hat{f}_i^{ig} = y_i P$

■ The fundamental residual-property relation

$$d(nG) = (nV)dP - (nS)dT + \sum \mu_i dn_i$$
 Alternative form
$$d(\frac{nG}{RT}) \equiv \frac{1}{RT} d(nG) - \frac{nG}{RT^2} dT \qquad (G = H - TS) dG = VdP - SdT)$$

$$d(\frac{nG}{RT}) = \frac{nV}{RT}dP - \frac{nH}{RT^2}dT + \sum_{i} \frac{\overline{G_i}}{RT}dn_i$$
 (11.54)

 $\label{eq:continuous} \therefore (\frac{nG}{RT}) \rightarrow \quad \text{Function of all of i canonical variable (T, P, n_j)}$

=> Allow evaluation of all other thermodynamic properties

$$\textbf{compare (6.37)} \qquad d(\frac{G}{RT}) = \frac{V}{RT} dP - \frac{H}{RT_o} dT$$

Special case of 1 mol of a constant-composition

- => Since we cannot evaluate absolute value of thermodynamic propertyes
- => use residual property

For ideal gas

$$d(\frac{nG^{ig}}{RT}) = \frac{nV^{ig}}{RT}dP - \frac{nH^{ig}}{RT^2} + \sum_{i} \overline{\frac{G}_{i}^{ig}}dn_{i}$$

Subtracting this eqn from (11.54)

$$d(\frac{nG^{R}}{RT}) = \frac{nV^{R}}{RT}dP - \frac{nH^{R}}{RT^{2}}dT + \sum_{i=1}^{R} \overline{G}_{i}^{R}dn_{i}$$

=> The fundamental residual-property relation

by introducing fugacity coeff. $(\overline{G}_i^R = RT \ln \hat{\phi}_i)$

$$d(\frac{nG^{R}}{RT}) = \frac{nV^{R}}{RT}dP - \frac{nH^{R}}{RT^{2}}dT + \sum_{i} \ln \hat{\varphi}_{i} dn_{i}$$

$$\Rightarrow \frac{\mathbf{V}^{R}}{RT} = \left[\frac{\partial (\mathbf{G}^{R} / RT)}{\partial \mathbf{P}}\right]_{T,x}, \ \frac{\mathbf{H}^{R}}{RT} = -T\left[\frac{\partial (\mathbf{G}^{R} / RT)}{\partial T}\right]_{P,x}$$

=> Use eqn (6.46), (6.48), (6.49) for the calculation

$$\ln \hat{\phi} = \left[\frac{\partial (nG^R / RT)}{\partial n_i}\right]_{P,T,n_j} \Rightarrow \ln \hat{\phi}_i : \text{partial property of } G^R / RT$$

For n mol of constant – composition mixture

$$\frac{nG^{R}}{RT} = \int_{0}^{P} (nZ - n) \frac{dP}{P}$$

Differentiation with respect to n_i at constant T, P, n_i

$$\ln \hat{\varphi}_{i} = \int_{0}^{P} \left[\frac{\partial (nZ - n)}{\partial n_{i}} \right]_{P,T,n_{j}} \frac{dP}{P}$$

since,
$$\frac{\partial (nZ)}{\partial n_i} = \overline{Z_i}, \frac{\partial n}{\partial n_i} = 1$$

■ Fugacity coefficients from the virial equation of state

Evolution of value of $\,\hat{\phi}_i\,$ from EOS

Simplest form of virial eqn
$$\ln \varphi = \int_0^P (z-1) \frac{dP}{P}$$
 (11.60)

$$z = 1 + \frac{BP}{RT}$$
 (3.38) where B=f(T) composition second virial coeff.

$$B = \sum_{i} \sum_{j} y_{i} y_{j} B_{ij}$$
 (11.61) where B_{ij} : characterize bimolecular interaction b/w i and j ($B_{ii} = B_{ii}$)

For binary mixture

$$B = y_1 y_1 B_{11} + y_1 y_2 B_{12} + y_2 y_1 B_{21} + y_2 y_2 B_{22}$$

= $y_1^2 B_{11} + 2y_1 y_1 B_{12} + y_2^2 B_{22}$ [11.62]

 (B_{11}, B_{22}) : virial coeff. of pure species

(B₁₂): cross coeff (mixture property)

For n mol of binary gas mixture eqn(3.38) becomes

$$nZ = n + \frac{nBP}{RT}$$

Differentiation with respect to n₁

$$\overline{z}_{1} \equiv \left[\frac{\partial(nz)}{\partial n_{1}}\right]_{P,T,n_{2}} = 1 + \frac{P}{RT} \left[\frac{\partial(nB)}{\partial n_{1}}\right]_{T,n_{2}}$$

From ean (11.60)

$$\ln \hat{\varphi}_{i} = \frac{1}{RT} \int_{0}^{P} \left[\frac{\partial (nB)}{\partial n_{1}} \right]_{T,n_{2}} dP \Rightarrow \frac{P}{RT} \left[\frac{\partial (nB)}{\partial n_{1}} \right]_{T,n_{2}}$$

Second virial coeff. can be written

$$\begin{split} B &= y_1(1 - y_2)B_{11} + 2y_1y_2B_{12} + y_2(1 - y_1)B_{22} \\ &= y_1B_{11} - y_1y_2B_{11} + 2y_1y_2B_{12} + y_2B_{22} - y_1y_2B_{22} \\ &= y_1B_{11} + y_2B_{22} + y_1y_2\delta_{12}, \quad \delta_{12} \equiv 2B_{12} - B_{11} - B_{22} \end{split}$$

since $y_i = n_i / n$, multiplying by n $nB = n_1 B_{11} + n_2 B_{22} + \frac{n_1 n_2}{n_1} \delta_{12}$

$$nB = n_1 B_{11} + n_2 B_{22} + \frac{n_1 n_2}{n} \delta_{12}$$

by differentiation

For multicomponent gas mixture, the general eqns.

$$\ln \hat{\varphi}_{k} = \frac{P}{RT} [B_{kk} + \frac{1}{2} \sum_{i} \sum_{j} y_{i} y_{j} (2\delta_{ik} - \delta_{ij})]$$

$$\delta_{ik} \equiv 2B_{ik} - B_{ii} - B_{kk} \qquad \delta_{ii} = 0 \qquad \delta_{ki} = \delta_{ik}$$

$$\delta_{ij} \equiv 2B_{ij} - B_{ii} - B_{jj} \qquad \delta_{kk} = 0$$

11.7 Generalized Correlations for the Fugacity Coefficient

To calculate ϕ , use Generalized methods for compressibility factor Z

Correlation for
$$z = z^0 + \omega z^1$$
 (3.57)

where
$$\omega \equiv -1.0 - \log(P_r^{sat})_{Tr=0.7}$$

Eqn (11.35)
$$\ln \phi_i = \int_0^P (z-1) \frac{dP}{P}$$
 (const T) transformed into generalize form

using
$$P = P_c P_r$$
, $dP = P_c dP_r \implies \ln \Phi_i = \int_0^{P_r} (z_i - 1) \frac{dP_r}{P_r}$ (11.65)

Using eqn (3.57)

$$\ln \varphi = \int_0^{P_r} (z^0 - 1) \frac{dP_r}{P_r} + \omega \int_0^{P_r} z^1 \frac{dP_r}{P_r}$$

 $\Rightarrow \ln \varphi = \ln \varphi^0 + \omega \ln \varphi^1 \Rightarrow$ Three parameter generalized correlation for φ

$$\therefore \varphi = (\varphi^0)(\varphi^1)^{\omega} \Rightarrow \text{ use table E13} \sim E14$$

Using Pitzer correlations for the second virial coeff.

$$Z = 1 + \hat{B} \frac{P_r}{T_r}$$
 (3.61) $\hat{B} = B^0 + \omega B^1$ (3.63)

$$\therefore Z - 1 = \frac{P_r}{T_r} (B^0 + \omega B^1)$$
 => Insert into eqn(11.15) and integrate

$$\ln \varphi = \frac{P_r}{T_r} (B^0 + \omega B^1) \Rightarrow \varphi = \exp\left[\frac{P_r}{T_r} (B^0 + \omega B^1)\right]$$

where
$$B^0 = 0.083 - \frac{0.422}{T_r^{1.6}}$$
, $B^1 = 0.139 - \frac{0.172}{T_r^{4.2}}$

Generalized correlations for fugacity coefficient in gas mixture

$$\ln \hat{\phi}_{k} = \frac{P}{RT} [B_{kk} + \frac{1}{2} \sum_{i} \sum_{j} (2\delta_{ik} - \delta_{ij})]$$

$$T_{rii} = T / T_{Cii}$$

More general form for coeff. $\hat{B}_{ij} = B^0 + \omega_{ii} B^1$ \Rightarrow B0, B1 \rightarrow function of T_{rij}

$$\hat{\mathbf{B}}_{ij} = \mathbf{B}^0 + \omega_{ij} \mathbf{B}^1$$

$$\Rightarrow$$
 B⁰, B¹ \rightarrow function of T_{rij}

$$B_{ij} \equiv rac{B_{ij}P_{Cij}}{RT_{Cij}}$$
 (11.69)

 $B_{ij} \equiv \frac{B_{ij}P_{Cij}}{RT_{Cij}} \quad \text{(11.69)} \quad \text{=>use Prausnitz's combining rule for the calculation of} \quad \omega_{ij}, T_{Cij}, R_{Cij}$

$$\omega_{ij} = \frac{\omega_i + \omega_j}{2} \qquad [11.70] \qquad T_{cij} = (T_{ci} T_{cj})^{1/2} (1 - k_{ij}) \qquad [11.71]$$

$$P_{cij} = \frac{Z_{cij} R T_{cij}}{V_{cii}} \qquad [11.72] \qquad Z_{cij} = \frac{Z_{ci} + Z_{cj}}{2} \qquad [11.73]$$

Where k_{ij} = empirical interaction parameter if i=j and for chemically similar species $k_{ii}=0 \rightarrow all$ eqns reduce to value for pure species

Procedure to obtain $\hat{\phi}_i$

- ① Find value of B_{ii} from (11.69)
- ② insert Bij into eqn(11.61) $B = \sum \sum y_i y_i B_{ii}$
- value of the pure-species virial coeff. B_{kk} , B_{ii} for eqn

$$\hat{\mathbf{B}} = \frac{\mathbf{BP_C}}{\mathbf{RT_C}} = \mathbf{B}^0 + \omega \mathbf{B}^1$$

10-8. The ideal solution model

Definition: - all molecules are of the same size

all forces b/w molecules (like and unlike) are equal

The chemical potential from ideal-gas mixture model

$$\mu_i^{ig} \equiv \overline{G}_i^{ig} = G_i^{ig}(T, P) + RT \ln y_i$$
 (11.24)

=> Only applicable for ideal gas

replace $G_i^{ig}(T,P) \Rightarrow G_i(T,P)$ (Gibbs energy of pure i in its real physical state of gas liquid, solid)

chemical potential of an ideal solution

$$\mu_i^{id} \equiv \overline{G}_i^{id} = G_i(T, P) + RT \ln x_i \qquad (11.75)$$

=> applicable gas, liquid, solid

From eqn(11.18)
$$(\frac{\partial \overline{G}_{i}^{id}}{\partial P})_{T,x} = \overline{V}_{i}$$

$$\overline{V}_{i}^{id} = \left(\frac{\partial \overline{G}_{i}^{id}}{\partial P}\right)_{T,x} = \left(\frac{\partial \overline{G}_{i}}{\partial P}\right)_{T} = V_{i} \qquad \therefore \overline{V}_{i}^{id} = V_{i} \qquad (11.76)$$

From eqn(11.19)
$$(\frac{\partial \overline{G}_i}{\partial T})_{P,x} = -\overline{S}_i$$

$$\overline{S}_{i}^{id} = -\left(\frac{\partial \overline{G}_{i}^{id}}{\partial T}\right)_{P,x} = -\left(\frac{\partial G_{i}}{\partial T}\right)_{p} - R \ln x_{i} = S_{i} - R \ln x_{i}$$
(11.77)

For
$$\overline{H}_i^{id}$$
, $\overline{H}_i^{id} = \overline{G}_i^{id} + TS_i^{id}$, using (11.75) (11.77)
$$\overline{H}_i^{id} = G_i + RT \ln x_i + TS_i - RT \ln x_i$$
$$= G_i + TS_i = H_i$$

■ The Lewis / Randall Rule

From eqn (11.46)
$$\mu_i \equiv \Gamma_i(T) + RT \ln \hat{f}_i \qquad \text{(11.31)} \quad G_i \equiv \Gamma_i(T) + RT \ln f_i$$

[11.46-11.31]
$$\Rightarrow$$
 $\mu_i^{id} = \overline{G}_i^{id} = G_i + RT \ln(\frac{\hat{f}_i^{id}}{f_i})$

For the special case of an ideal solution

$$\mu_{i} = G_{i} + RT \ln(\frac{\hat{f}_{i}}{f_{i}})$$

If compared with eqn(11.75) $\mu_i^{id} = G_i + RT \ln x_i$

$$\hat{f}_i^{id} = x_i f_i$$
 (11.83) => Show the composition dependence of the fugacity in an ideal solution (Lewis/Randall rule)

Lewis/Randall Rule: fugacity of each species

mole fraction
proportional constant = fugacity of pure species i

Alternative form of Lewis/Randall Rule :
$$\hat{\phi}_i^{id} = \phi_i$$
 (11–81)

Fugacity coeff. of species i in an ideal solution = fugacity coeff. of pure species i

11.9. Excess Properties

Recall the relation b/w $G^R, \phi_i, \hat{\phi}_i$ and PVT data

$$\frac{G_{i}^{R}}{RT} = \int_{0}^{P} (z_{i} - 1) \frac{dP}{P} \qquad (6.49)$$

$$\ln \phi_{i} = \int_{0}^{P} (z_{i} - 1) \frac{dP}{P} \qquad (11.35) \qquad \ln \hat{\phi}_{i} = \int_{0}^{P} (\bar{z}_{i} - 1) \frac{dP}{P} \qquad (11.60)$$

-> obtain thermodynamic property using Residual properties

In the case of liquid, measure the departure from ideality not from ideal gas, but from ideal solution => excess property

Mathematical formulation

 $\mathbf{M}^{\mathrm{E}} \equiv \mathbf{M} - \mathbf{M}^{\mathrm{id}}$ (Difference b/w actual property and ideal solution)

For example,
$$G^E=G-G^{id}$$
, $H^E=H-H^{id}$, $S^E=S-S^{id}$, $G^E=H^E-TS^E$ considering $M^R=M-M^{ig}$ Pure species $M^E=0$
$$M^E-M^R=-(M^{id}-M^{ig})$$

(ideal gas mixture => ideal solution of ideal gas) $G^{ig} = \sum_{i} x_i G_i^{ig} + RT \sum_{i} x_i \ln x_i$

Compare M^{ig} and M^{id}

$$\begin{split} H^{ig} &= \sum_{} y_i H^{ig}_i & \qquad \qquad H^{id} = \sum_{} x_i H_i \\ S^{ig} &= \sum_{} y_i S^{ig}_i - R \sum_{} y_i \ln y_i & \qquad S^{id} &= \sum_{} x_i S_i - R \sum_{} x_i \ln x_i \\ G^{ig} &= \sum_{} y_i G^{ig}_i - RT \sum_{} y_i \ln y_i & \qquad G^{id} &= \sum_{} x_i G_i - RT \sum_{} x_i \ln x_i \\ & \qquad \qquad \therefore M^{id} - M^{ig} &= \sum_{} x_i M_i - \sum_{} x_i M_i^{ig} &= \sum_{} x_i M_i^R \\ & \qquad M^{id} - M^{ig} &= > M^R - M^E & \qquad \therefore M^E &= M^R - \sum_{} x_i M_i^R \end{split}$$

Excess Property: applied to only mixture
Residual property: applied to both pure species & mixture

For partial excess property :
$$\overline{M}_i^E = \overline{M}_i^E - \overline{M}_i^{id}$$

**** Fundamental excess-property relation**

$$d(\frac{nG^{E}}{RT}) = \frac{nV^{E}}{RT}dP - \frac{nH^{E}}{RT^{2}}dT + \sum_{i} \frac{\overline{G}_{i}^{E}}{RT}dn_{i}$$

=> Similar to fundamental residual-property relation

The Excess Gibbs Energy and the Activity Coefficient

From eqn (11.46) $\overline{\mu}_i = \Gamma_i(T) + RT \ln \hat{f}_i$ $\overline{G}_i = \Gamma_i(T) + RT \ln \hat{f}_i$

From Lewis/Randall rule, for an ideal solution

$$\overline{G}_{i}^{id} = \Gamma_{i}(T) + RT \ln \hat{f}_{i}^{id} = \Gamma_{i}(T) + RT \ln x_{i} f_{i}$$

Difference
$$\overline{G}_i - \overline{G}_i^{id} = \overline{G}_i^E = RT ln \frac{\hat{f}_i}{x_i f_i}$$

$$\overline{G}_i^R = RT \ln \hat{\phi}_i$$
 , for ideal solution $\overline{G}_i^E = 0, \gamma_i = 1$

To device chemical potential of mixture

$$\overline{G}_{i} - \overline{G}_{i}^{id} = RT \ln \gamma_{i}, \quad \overline{G}_{i}^{id} = G_{i} + RT \ln x_{i} \quad \text{(11.75)} \qquad \overline{G}_{i} = G_{i} + RT \ln \gamma_{i} x_{i} \quad \text{(11.92)}$$

Comparison of three equations defining chemical potential

$$\mu_{i}^{ig} = G_{i}^{ig} + RT \ln y_{i}$$
 (11.24)

$$\mu_{i}^{id} = G_{i} + RT \ln x_{i}$$
 (11.75)

$$\mu_{i}^{i} = G_{i} + RT \ln \gamma_{i} X_{i}$$
 (11.92)

2nd Eqn: ideal solution model

■ Excess-property Relation

In fundamental excess property relation

$$d(\frac{nG^{E}}{RT}) = \frac{nV^{E}}{RT}dP - \frac{nH^{E}}{RT^{2}}dT + \sum_{i} \frac{G_{i}^{E}}{RT}dn_{i}$$

$$= \frac{nV^{E}}{RT}dP - \frac{nH^{E}}{RT^{2}}dT + \sum_{i} \ln \gamma_{i} dn_{i} (\overline{G}^{E} = RT \ln \gamma_{i})$$

$$\therefore \frac{V^{E}}{RT} = \left[\frac{\partial (G^{E}/RT)}{\partial P}\right]_{T,x} \quad \text{(11.90)}, \qquad \frac{H^{E}}{RT} = -T\left[\frac{\partial (G^{E}/RT)}{\partial T}\right]_{P,x} \quad \text{(11.91)}$$

 \Rightarrow Effect of T, P on the G^E

$$\ln \gamma_i = \left[\frac{\partial (nG^E/RT)}{\partial n_i}\right]_{P,T,n_j}$$
 (11.96) $\Rightarrow \ln \gamma_i : \text{partial properties of } \frac{G^R}{n_i}$

- => Similar to eqn for Residual property
- lpha Difference: in the case of relation to $G^R \rightarrow$ we can use experimental PVT data \sim EOS to calculate Residual property

$$V^{E}, H^{E}, \gamma_{i}$$
 => Can be obtained by experiment

$$ln\,\gamma_i\,$$
 : partial property of

$$\ln \gamma_i$$
: partial property of $\frac{G^E}{RT}$, $\therefore \ln \gamma_i = \frac{\overline{G}^E}{RT}$

$$\frac{1}{100} \cdot \frac{\overline{V}_{i}^{E}}{RT} = \left(\frac{\partial \ln \gamma_{i}}{\partial P}\right)_{T,x} \qquad \text{(11.97)}$$

$$\therefore \frac{\overline{V}_{i}^{E}}{RT} = \left(\frac{\partial \ln \gamma_{i}}{\partial P}\right)_{T,x} \qquad \text{[11.97]}, \qquad -\frac{\overline{H}_{i}^{E}}{RT^{2}} = \left(\frac{\partial \ln \gamma_{i}}{\partial T}\right)_{P,x} \qquad \text{[11.98]}$$

 \Rightarrow Effect of T, D on the γ_i

From the summability eqn $M = \sum x_i \overline{M}_i$

$$\frac{G^{E}}{RT} = \sum_{i} x_{i} \ln \gamma_{i} \quad (11.99)$$

From Gibbs/Duhem eqn (at const T, P) $\sum x_i d\overline{M}_i = 0$

$$\sum_{i} x_{i} d \ln \gamma_{i} = 0$$

