화학공학의 역사 (원자설과 분자설)

충남대학교 김 인호

목차

- 돌턴의 원자설
- 배수비례의 법칙
- 기체반응부피의 법칙
- 아보가르도의 분자설
- 전기화학과 화학결합
- 유기화학과 원자배열
- 주기율표

돌턴의 원자설

- 기상학자로서 돌턴: 57년간의 기상관측 자료로서 기체가 무수한 입자로서 구성됨 을 추론
- 기체의 물에 대한 용해도 연구, 분압의 법 칙 발견
- 기체의 입자 철학> 원자량의 개념>원자설
- 비교 원자량표 발표 (1803)
- 물: HO, 탄산가스: CO2, 암모니아: NH

원자설의 요약

- 물질은 이상 더 분해할 수 없는 입자 원자 로 되어 있다. 원자는 정다면체로 열소분 위기 (Caloric envelope)로 둘러 싸여 있다.
- 화학 현상은 원자의 결합과 분리에 귀착됨
- 원자는 라보아지에 원소 수에 상당하는 종 류가 있다.
- 화합물의 복합원자 (Compound atom)는 모든 면에서 동일하다.

배수비례의 법칙

- 연역적인 돌턴의 가설: 메탄 에틸렌 가스의 분석 에서 직관적인 일반원칙으로서의 배수비례 개념 도출. 기타예: NO2, N2O, CO2, CO
- 귀납적인 베르셀리우스의 증명: 많은 화합물(약 2000종)의 분석(1807-1812)에 의한 실험적 증명. PbO, PbO₂, CuO, Cu₂O,SO₂, SO₃, FeO, Fe₂O₃
- 원자들이 결합할 때 간단한 정수비로 결합한다.
- 돌턴은 원자 결합의 본질, 반응의 이유에 대한 설명을 하지 못하였다.

기체 반응의 법칙

- 1808년에 기체들이 반응할 때 생성된 부피와 소비된 부피는 정수의 비로 게이 뤼삭이 보고예: 3리터의 수소와 1리터의 질소가 반응
- 기체의 동일한 부피는 동일한 원자(게이 뤼삭은 분자로 부름)수를 포함
- 수소 1부피 + 염소 1부피 -> 염화수소 2부피
- 원자(염소,수소)는 쪼개져야 염화수소 복합원자의 수의 증가를 설명할 수 있다. 이를 돌턴의 원자설이 설명하지 못함

아보가드로의 분자설

- 1811년 아보가드로는 기체가 원자가 아닌 몇 개의 원자가 결합한 입자로 구성되어 있다고 주장하고 이를 분자로 부름
- 1860년 독일의 칼스루에의 학회에서 분자설을 인정
- 기체 분자가 몇 개의 원자로 구성되며 원자들이 어떻게 결합하여 분자를 이루는지 설명하지 못 하여 아보가드로의 주장이 받아 들여지는데 49 년이 걸림
- 원자들 사이의 반발력 증거(돌턴 분압의 개념)는 있는데 반해 원자 사이의 인력을 설명할 개념 부 족을 해결하여야 했다.

전기화학

- 갈바니의 전기 발견 (1791년)-개구리 다리 경련 이 전기현상임을 발견
- 볼타 전지(1796년)-접촉 전기설, 두 금속 사이에 습한 도체가 존재하면 전류가 흐름
- 고대의 정전기-> 19세기 흐르는 전기의 발명 -> 전기분해에 의한 화학반응
- 데비는 용융염으로 부터 전기분해에 의해 알칼리, 알칼리 토금속 분리 (1800-1810)
- 옴의 법칙(1827)-전류계 발명과 전류, 저항, 전 압사이의 관계 유도

전기화학과 화학결합

- 1834년 패러데이는 여러 전기분해 반응에서 발생한 수소양을 비교하여 물질의 화학량(전기화학당량) 측정. 수소와 산소는 음이온, 납과 주석은 양이온으로 각각 당량이 1,8, 104, 54로 보고
- 양이온(Cation), 음이온(Anion), Cathode(음극), Anode(양극)의 용어를 패러데이가 사용
- 베르셀리우스의 전기화학이론-원소는 양이나 음으로 하전되어 있고 서로 당기는 양과 음의 원소가 반응한다. 최초의 화합결합이론으로 오늘날소위 공유결합성 화합물(기체, 유기화합물)의 결합을 설명하지 못함. 1842년 이후 사라짐

아보가드로와 카니자로

- 카니자로에 의한 아보가드로 분자설 다시소개 (1860)-분자 개념에 의한 정확한 원자량 측정 방법 설명. 기체 밀도->분자량 계산->원자량 계 산. 수소원자를 1로 하고 수소를 포함한 많은 기 체의 분자량에서 염소, 산소, 황 등의 원자량 계 산
- 1840-1860년 있었던 혼란스러운 유기화합물의 분자식을 정리하는 계기가 되었으며 유기화합물 의 분자구조 이론의 확립과 원자량에 의한 원소 분류에 체계화, 주기율표 발견에 큰 기여를 함

유기화학과 원자 배열

- 유기물의 인식
 - 17세기의 유기물:에테르,숙신산, 벤조산,포름 산,포도당,메탄올,아세톤,타르타르산을 목초 나 에탄올,황산으로 부터 제조
 - 18세기의 유기물: 빙초산,무수알코올,메탄,황 산에테르,질산에테르,각종 유기산,글리세린, 아세트알데히드,시안산,염화에틸렌
 - 19세기 전반기: 모르핀,키닌 등 알칼로이드
 - 생기론: 베르셀리우스가생물체의 산물을 유기 물로 정의 (1807)

유기화합물의 합성

- 뵐러의 1825년 논문(시안산에 대해)에서 암모니 아수에 시안가스를 통과시켜 옥살산암모늄과 백 색 결정을 얻음을 발표하고1828년에 결정이 요 소임을 확인
- 생기론의 폐기-유기물이 무기물의 합성에서 획 득 가능
- 유기물 원소 분석법의 발전으로 배수비례의 법 칙이 유기물에도 적용됨을 베르셀리우스가 증명 (1815)
- 1823년 이성질체의 발견(리비히의 뇌산/뵐러의 시안산)으로 분자내의 원자배열을 조사할 필요 성 제기-뵐러, 리비히

유기화학의 기초개념 형성

- 원자단의 발견-산의 수소설, 산의 다염기 성을 1838년 제시
- 유기 치환반응-듀마와 로랑, 1834년 치환 의 현상 논문 발표 (수소를 할로겐으로 치 환)
- 게르하르트의 타입설(1853)
 - 유기물의 4가지 타입: 수소형(에탄 벤젠),염화수소형(염화에틸),물형(에틸알콜,에틸에테르), 암모니아형(에틸아민,아닐린)

탄소원자가와 구조식

- 케큐레(1857)-탄소원자의 원자가=4이고 메탄을 제5형으로 분류
- 케큐레(1865)-벤젠의 구조가 고리형
- 파스퇴르(1848)-타르타르산 염으로 라세 미 결정체 분리, 입체화학의 시초
- 반트호프(1874)-비대칭탄소(키랄탄소)의 개념 제시

주기율표

- 멘델레프 시대(1869)까지의 원소 63종
 - 고대부터 1600년까지:탄소 황 철 주석 납 구리 수은 은 금 비소 안티몬 비스무스 아연 (13종)
 - 17-18 세기:인 코발트 백금 니켈 수소 질소 염소 망간 산소 망간 몰리브덴 텔루르 텅스텐 우라늄 지르코늄 티타늄 이트륨 베릴륨 크롬 (19종)
 - 19 세기: 니오브 탄탈 팔라듐 로듐 세륨 오스뮴 이리듐 칼륨 나트륨 바륨 스트론튬 칼슘 마그네슘 붕소요드 리튬 카드뮴 셀렌 규소 알미늄 브롬 토륨 바나듐란 테르븀 에르븀 루테늄 세슘 루비듐 탈륨 인듐(31종)

원소의 분류와 주기율

- 멘델레프 이전 연구자
 - 되버라이너 (1829): 브롬 원자량=(염소 원자 량+요드 원자량)/2 세쌍원소
 - 페텐코퍼(1850):원소 사이에 산술급수관계 존 재 밝힘 O=16, S=16+16, Se=16+4x16
 - 뉴랜즈(1853): 옥타브의 법칙, 8번 원소의 성 질은 1번 원소와 유사, 7원소 간격으로 비슷한 성질을 가진 원소가 존재함

멘델레프의 주기표

- 1869년 원소의 원자량과 그 성질과의 관계 논문 발표
- 기존 원소 원자량의 오류 수정: In, Be, U, Au, Os, Ir, Pt
- 미발견 원소의 성질 예측: Ge, Ga, Sc
- 화학자의 나침반으로 화학발전의 역사에 공헌