Chapter 6 Pneumatic Transport and Standpipes

6.1 Pneumatic Transport

Use of a gas to transport a particulate solid through pipeline

Three major variables for pneumatic conveying

- solid mass flow rate
- gas mass flow rate
- pressure gradient (pressure drop per unit length)

(1) Dilute-Phase and Dense-Phase Transport

(2) The Choking Velocity in Vertical Transport

Figure 6.1 - $\Delta p/\Delta L$ vs. *U* (gas superficial velocity) at various solids flow flux G Static head of solids \rightarrow friction resistance

Choking velocity, U_{CH}

The lowest velocity at which the dilute-phase transport can operate at G given

Punwani et al (1976)

$$
\frac{U_{CH}}{\varepsilon_{CH}} - U_T = \frac{G}{\rho_p (1 - \varepsilon_{CH})}
$$

$$
\rho_f^{0.77} = \frac{2250 D(\varepsilon_{CH}^{-4.7} - 1)}{\left[\frac{U_{CH}}{\varepsilon_{CH}} - U_T\right]^2}
$$

(3) Saltation Velocity in Horizontal Transport

Figure 6.2 - $\Delta p/\Delta L$ vs. *U*(gas superficial velocity) at various solids flow flux G

Saltation velocity, USALT

The gas velocity at which the solids to begin to settle out

Boundary between dilute phase flow and dense phase flow

Rizk(1973)

$$
\frac{M_p}{\rho_f U_{SALT} A} = \left\{ \frac{1}{10^{-(1440x + 1.96)}} \right\} \left\{ \frac{U_{SALT}}{\sqrt{gD}} \right\}^{(1100x + 2.5)} \text{in SI}
$$

solid loading a mode number
at saltation a structure and structure where M_{ϕ} : particle mass flow rate

 D : pipe diameter

(4) Fundamentals

Gas and particle velocity

Superficial velocity

$$
U_{fs} = \frac{Q_f}{A} \quad \text{and} \quad U_{fp} = \frac{Q_p}{A}
$$

Actual velocity

$$
U_f = \frac{Q_f}{A\epsilon} = \frac{U_{fs}}{\epsilon} \quad \text{and} \quad U_p = \frac{Q_p}{A(1-\epsilon)} = \frac{U_{ps}}{1-\epsilon}
$$

* Slip velocity U_{slip}

$$
U_{rel} = U_f - U_p \equiv U_{slip}
$$

Continuity

Gas mass flow rate

$$
M_f = A U_f \varepsilon \rho_f
$$

Particle mass flow rate

$$
M_{p} = A U_{p} (1 - \varepsilon) \rho_{p}
$$

Solid loading

$$
\frac{M_{p}}{M_{f}} = \frac{U_{p}(1-\varepsilon)\rho_{p}}{U_{f}\varepsilon\rho_{f}}
$$

Pressure drop

From Newton's 2nd law of motion Figure 6.3

Rate of momentum for flowing gas-solid mixture

↓

 $=$ Net force exerting on the mixture

$$
p_1 - p_2 = \frac{1}{2} \rho_{f} \varepsilon U_f^2 + \frac{1}{2} \rho_{p} (1 - \varepsilon) U_p^2 + F_{fw} L + F_{pw} L
$$

gas solids gas-wall solids-wall
acceleration acceleration friction friction

$$
+ \rho_{f} L \varepsilon g \sin \theta + \rho_{p} L (1 - \varepsilon) g \sin \theta
$$

g as gravity solids g s gravity solids g

(5) Design for Dilute Phase Transport

Gas velocity

 U_f \sim 1.5U_{SALT} since U_{SALT} > U_{CH}

for systems comprising both vertical and horizontal lines U_f \sim 1.5U_{CH}

for vertical line only

Table. Approximate air velocity for powder transport

Pipeline pressure drop

 $F_{\mu\nu}L = 0.057 \frac{L}{D}$

for vertical transport

$$
F_{\mathit{pw}}L = \frac{2f_{\mathit{p}}(1-\epsilon)\, \mathit{p}_{\mathit{p}}U_{\mathit{p}}^2L}{D} = \frac{2f_{\mathit{p}}GU_{\mathit{p}}L}{D} \quad \text{for} \quad \text{horizontal}
$$

transport

where
$$
U_p = U_f (1 - 0.0638 x^{0.3} \rho_p^{0.5})
$$
 and
\n
$$
f_p = \frac{3}{8} \frac{\rho_f}{\rho_p} C_p \frac{D}{d_p} \left(\frac{U_f - U_p}{U_p} \right)
$$
\n
$$
C_D
$$
: drag coefficient (fn of Re_p)

Bend

 \sim 7.5 m of vertical section pressure drop

* Downflow through vertical-to-horizontal bend :

- greater tendency for saltation
- avoided if possible.
- * Blinded tee bend : Figure 6.4 with respect to radius elbow
	- prolonging service life due to cushioning effect
	- with the same pressure drop and solid attrition rate

Worked Example 6.1

Equipment

Figure 6.5 Positive pressure system Figure 6.6 Negative Pressure system

* Centrifugal blowers(fan) vs. Positive displacement blower low pressure the high pressure small amount of dust allowed ho dust is allowed

Some problems in pneumatic transport

(6) Dense Phase Transport

Flow Patterns

Horizontal - Figure 6.7 $Saltating flow - unstable, bad flow pattern$

Discontinuous dense phase flow*

Dune Flow / Discrete Plug Flow / Plug Flow* Continuous Dense Phase $Flow$ - requires high pressure adequate for short-pipe transport

Equipment

Blow tanks : with fluidizing element (Figure 6.13) without fluidizing element (Figure 6.14) Plug formation : air knife (Figure 6.10) air valve (Figure 6.11) diaphragm (Figure 6.12) Plug break-up : bypass (Figure 6.8) pressure actuated valves (Figure 6.9)

Design and Operation

- Use of test facilities + past experience to determine pipe size, air flow rate and type of dense phase system
- $-$ Group A, D better than Group B, C for dense phase conveying
- Higher permeability: more suitable for plug flow type **c** and the contract of the co

- Higher air retention: more suitable for dune mode flow

6.1S Flow of Liquid-Solid Suspension

(Slurries)

Characteristics of hydraulic transport

Transition velocity

 $Durand(1953)$

 $U_{tr} = 11.9(U_T D)^{1/2}x^{1/4}$

where D : pipe diameter

Critical(saltation) velocity

Durand (1953)

$$
U_c = F_L[2gD(\rho_p/\rho_f - 1)]^{1/2}
$$

where F_L : function of d_p and ε

Hanks (1980)

$$
U_c = 3.12(1 - \varepsilon)^{0.186} \left(\frac{x}{D}\right)^{1/6} \left[2g D(\rho_p/\rho_f - 1)\right]^{1/2}
$$