Chapter 6 Pneumatic Transport and Standpipes

6.1 Pneumatic Transport

Use of a gas to transport a particulate solid through pipeline

Three major variables for pneumatic conveying

- solid mass flow rate
- gas mass flow rate
- pressure gradient(pressure drop per unit length)

(1) Dilute-Phase and Dense-Phase Transport

Dilute-Phase	Dense-Phase			
High gas velocity (> 20 m/s)	Low-gas velocity (1-5 m/s)			
Low solids concentration	High solids concentration			
(< 1 x by volume)	(> 30 x by volume)			
Low pressure drop (<5 mbar/m)	High pressure drop (> 20 mbar/m)			
Short-route, continuous	Batch or semibatch transport			
transport(< 10 ton/h)				
Capable under negative pressure				
Particles behave as individuals				
Fully suspended in gas	Not-fully suspended in gas			
Fluid-particle : dominant	Much interaction between particles			
	and between particle and wall			

(2) The Choking Velocity in Vertical Transport

Figure 6.1 - $\Delta p / \Delta L$ vs. U (gas superficial velocity) at various solids flow flux G Static head of solids \rightarrow friction resistance

Choking velocity, U_{CH}

The lowest velocity at which the dilute-phase transport can operate at G given

Punwani et al (1976)

$$\frac{U_{CH}}{\varepsilon_{CH}} - U_T = \frac{G}{\rho_p (1 - \varepsilon_{CH})}$$

$$\rho_f^{0.77} = \frac{2250D(\varepsilon_{CH}^{-4.7} - 1)}{\left[\frac{U_{CH}}{\varepsilon_{CH}} - U_T\right]^2}$$

(3) Saltation Velocity in Horizontal Transport

Figure 6.2 - $\Delta p / \Delta L$ vs. U(gas superficial velocity) at various solids flow flux G

Saltation velocity, U_{SALT}

The gas velocity at which the solids to begin to settle out

Boundary between dilute phase flow and dense phase flow

Rizk(1973)

$$\frac{M_{p}}{\rho_{f}U_{SALT}A} = \left\{\frac{1}{10^{(1440x+1.96)}}\right\} \left\{\frac{U_{SALT}}{\sqrt{gD}}\right\}^{(1100x+2.5)} \text{in SI}$$

solid loading Froude number at saltation where M_p : particle mass flow rate

D : pipe diameter

(4) Fundamentals

Gas and particle velocity

Superficial velocity

$$U_{fs} = \frac{Q_f}{A}$$
 and $U_{fp} = \frac{Q_p}{A}$

Actual velocity

$$U_f = \frac{Q_f}{A\epsilon} = \frac{U_{f\epsilon}}{\epsilon} \quad \text{and} \quad U_p = \frac{Q_p}{A(1-\epsilon)} = \frac{U_{p\epsilon}}{1-\epsilon}$$

* Slip velocity U_{slip}

$$U_{rel} = U_f - U_p \equiv U_{slip}$$

Continuity

Gas mass flow rate

$$M_f = A U_f \varepsilon \rho_f$$

Particle mass flow rate

$$M_{p} = A U_{p} (1-\varepsilon) \rho_{p}$$

Solid loading

$$\frac{M_{p}}{M_{f}} = \frac{U_{p}(1-\varepsilon)\rho_{p}}{U_{f}\varepsilon\rho_{f}}$$

Pressure drop

From Newton's 2nd law of motion Figure 6.3

Rate of momentum for flowing gas-solid mixture

 \downarrow

= Net force exerting on the mixture

$$p_1 - p_2 = \frac{1}{2} \rho_f \varepsilon U_f^2 + \frac{1}{2} \rho_p (1 - \varepsilon) U_p^2 + F_{fw} L + F_{pw} L$$

gas solids gas-wall solids-wall
acceleration acceleration friction friction

$$+\rho_{f}L\varepsilon g\sin\theta + \rho_{p}L(1-\varepsilon)g\sin\theta$$

gas gravity solids gravity

(5) Design for Dilute Phase Transport

Gas velocity

 $U_f \sim 1.5 U_{SALT}$ since $U_{SALT} > U_{CH}$

for systems comprising both vertical and horizontal lines $U_{\rm f}~{\rm \sim}~1.5 U_{\rm CH}$

for vertical line only

Table. Approximate air velocity for powder transport

Powder	U, m/s
Wheat, rice, plastic pellets	16 - 24
Grains, limestone powder	16 - 23
Soda ash, sugar	15 - 20
PVC powder	20 - 26
Carbon powder	18 - 24
Cement	18 - 28
Alumina powder	24 - 32
Sand	23 - 30

Pipeline pressure drop

$$F_{pw}L = 0.057 GL \sqrt{\frac{g}{D}} \qquad \text{for vertical transport}$$

$$F_{pw}L = \frac{2f_p(1-\varepsilon)\rho_p U_p^2 L}{D} = \frac{2f_p G U_p L}{D} \qquad \text{for horizontal}$$

transport

where
$$U_p = U_f (1 - 0.0638 x^{0.3} \rho_p^{0.5})$$
 and

$$f_p = \frac{3}{8} \frac{\rho_f}{\rho_p} C_D \frac{D}{d_p} \left(\frac{U_f - U_p}{U_p} \right)$$

$$C_D: \text{ drag coefficient (fn of Rep)}$$

Bend

 \sim 7.5 m of vertical section pressure drop

* Downflow through vertical-to-horizontal bend :

- greater tendency for saltation

- avoided if possible.

- * Blinded tee bend : Figure 6.4 with respect to radius elbow
 - prolonging service life due to cushioning effect
 - with the same pressure drop and solid attrition rate

Worked Example 6.1

Equipment

Figure 6.5 Positive pressure system Figure 6.6 Negative Pressure system

* Centrifugal blowers(fan)	vs. Positive displacement blower
low pressure	high pressure
small amount of dust allow	ed no dust is allowed

Some problems in pneumatic transport

	Possible	Avoided by				
	at high concentration	feeding	at	dispersed	state	
Blocking	region(around solid feeder and	sufficient acceleration length and				
bend		adequate bend curvature				
Adhesion with moisty, low-melting or		adequate range of gas velocity				
	electrically charged powder	adequate range of gas verocity				
Attrition at bend		- low gas velocity				
		- higher solid load				
	at bend	- changing collision angle and bend				
		material.				

(6) Dense Phase Transport

Flow Patterns

Horizontal - Figure 6.7 Saltating flow - unstable, bad flow pattern Discontinuous dense phase flow*

Dune Flow / Discrete Plug Flow / Plug Flow* *Continuous Dense Phase Flow* - requires high pressure adequate for short-pipe transport

Equipment

Design and Operation

- Use of test facilities + past experience
 to determine pipe size, air flow rate and type of dense
 phase system
- Group A, D better than Group B, C for dense phase conveying
- Higher permeability: more suitable for plug flow type

conveying

- Higher air retention: more suitable for dune mode flow

6.1S Flow of Liquid-Solid Suspension

(Slurries)

Characteristics of hydraulic transport

Transition velocity

Durand(1953)

 $U_{tr} = 11.9 (U_T D)^{1/2} x^{1/4}$

where D: pipe diameter

Critical(saltation) velocity

Durand(1953)

$$U_c = F_L [2gD(\rho_p/\rho_f - 1)]^{1/2}$$

where F_L : function of d_p and ϵ

Hanks (1980)

$$U_{c} = 3.12(1-\varepsilon)^{0.186} \left(\frac{x}{D}\right)^{1/6} [2gD(\rho_{p}/\rho_{f}-1)]^{1/2}$$