Chapter 7 Separation of Particles from a Gas

For either gas cleaning (removal of dusts) or recovery of particulate products

Separation Mechanisms

Sedimentation :

Settling chamber, centrifuge

Migration of charged particle in an electric field :

Electrostatic precipitator

Inertial deposition :

Cyclone, scrubber, filters, inertial impactor

Brownian diffusion :

Diffusion batteries

* Filters

Figure 7.1

7.1 Gas Cyclones

Figure 7.2

7.2 Flow Characteristics

Rotational flow in the forced vortex in the cyclone body \rightarrow radial pressure gradient

Resistance coefficient: Euler number

$$Eu = \frac{\Delta p}{\rho_f v^2/2}$$

where $v = \frac{4q}{\pi D^2} \sim \frac{\text{pressure force}}{\text{inert force}}$

* **Economy** of the collectors

Based on $(1000 \text{ m}^3 \text{ cleaned gas /h})$

annualized capital cost + operating cost* :

* Power requirement = $Q \ \Delta p$, [W]

where $\Delta p = f(L, v, \rho_f, \mu) \rightarrow Eu = f(Re_p) \sim \text{constant}$

By dimensional analysis

for a given cyclone, independent of D

7.3 Efficiency of Separation

(1) Total Efficiency and Grade Efficiency

Total mass balance

$$M = M_f + M_c$$

where M: total mass flow rate

- M_c : mass flow rate discharged from the solid exit orifice (coarse product)
- M_f : solid mass flow rate leaving with the gas (fine product)

Component mass balance

$$M\frac{dF}{dx} = M_f \frac{dF_f}{dx} + M_c \frac{dF_c}{dx} \qquad (*)$$

where
$$\frac{dF}{dx}$$
, $\frac{dF_c}{dx}$, $\frac{dF_f}{dx}$: differential frequency size

distribution s by mass for the feed, coarse product and fine product

Total efficiency, E_T

$$E_T = \frac{M_c}{M}$$

Grade efficiency, G(x)

 $G(x) = \frac{mass of solids of size x in coarse product}{mass of solids of size x in feed}$

$$G(x) = \frac{M_c \frac{dF_c}{dx}}{M \frac{dF}{dx}} = E_T \frac{\frac{dF_c}{dx}}{\frac{dF}{dx}}$$

From (*)

$$\frac{dF}{dx} = E_T \frac{dF_c}{dx} + (1 - E_T) \frac{dF_f}{dx}$$

In cumulative form

$$F = E_T F_c + (1 - E_T) F_f$$

(2) Simple Theoretical Analysis for Gas Cyclone Separator

Figure 7.3

At equilibrium orbit, r

$$3\pi_{\mathcal{X}} \mu U_r = \frac{\pi_{\mathcal{X}}^3}{6} (\rho_p - \rho_f) \frac{U_{\Theta}^2}{r}$$
$$F_D \qquad F_C - F_B$$

where $U_{\Theta}r^{1/2} = constant$ for confined vortex

$$= U_{\Theta_R} R^{1/2}$$

$$U_r r = constant \text{ for radially inward flow}$$

$$= U_R R$$

$$\therefore x^2 = \frac{18\mu}{\rho_p - \rho_f} \frac{U_R}{U_{\Theta R}^2} r$$

where γ : the radius of the equilibrium orbit (displacement) for a particle of diameter x

For all the particles to be collected, $r \ge R$

$$x_{crit}^2 = \frac{18\mu}{\rho_p - \rho_f} \frac{U_R}{U_{\Theta R}^2} R$$

where x_{crit} : critical(minimum) diameter

of the particles to be collected

 \downarrow

or

If $x > x_{crit}$, G(x) = 1 and otherwise, G(x) = 0

(3) Cyclone Grade Efficiency in Practice

Ideal grade efficiency curve Figure 7.4 Actual grade efficiency curve, "S"-shaped

: distorted due to velocity fluctuation and particle-particle interaction

* x_{50} and St_{50} in stead of x_{crit} and St_{crit} where *cut size*, $x_{50} \equiv x$ at G(x) = 0.5

7.4 Scale-up of Cyclone

Dimensional analysis for G(x)

 $G(d_p) = f(x, \rho_p, \rho_f, L, v) \rightarrow G(x) = f(St, Re, x/L)$

where L : characteristic length of the separator

U : characteristic velocity of the particle

in the separator

$$St = \frac{\rho_p x^2 U}{18\mu L}$$
 and $Re = \frac{\rho_f U L}{\mu}$

From both theoretical and actual analysis for given cyclone,

$$St_{50} \left(\equiv \frac{\rho_{p} x_{50}^{2} U}{18 \mu D} \right) \sim constant \rightarrow x_{50} \propto \sqrt{\mu D^{3} / \rho_{p} Q}$$

$$Eu \left(\equiv \frac{\Delta p}{\rho_{f} U^{2} / 2} \right) \sim constant \rightarrow \Delta p \propto Q^{2} / D^{4}$$

$$\uparrow \qquad \uparrow$$

$$independent \qquad U = Q / \frac{\pi}{4} D^{2}$$
of Re

Standard Cyclone Designs - dimension

Figure 7.5

- High efficiency Stairmand cyclone:

$$St_{50} = 1.4 \times 10^{-4}$$
 and $Eu = 320$

- High flow rate Stairmand cyclone

$$St_{50} = 6 \times 10^{-3}$$
 and $Eu = 46$

Grade efficiency

$$G(x) = \frac{\left(\frac{x}{x_{50}}\right)^2}{\left[1 + \left(\frac{x}{x_{50}}\right)^2\right]}$$

for the geometry shown in p182

Figure 7.6

7.5 Range of operation

Figure 7.7 : optimum operation somewhere between A and B cf. Reentrainment

7.6 Some Practical Design and Operation Details

High dust loading ($> -5g/m^3$) \rightarrow high separation efficiency due to agglomeration

For well-designed cyclone

$$Eu = \sqrt{\frac{12}{Stk_{50}}}$$

Abrasion: gas inlet and particle outlet

lined with rubber, refractory lining or the materials Attrition: large particles with recirculation system Blockages: overloading, mechanical defects and water condensation Discharge hoppers(vortex breaker and stepped cone) and diplegs

(internal cyclone in fluidized bed) Cyclones in series: increasing recovery

N cyclones in parallel

For large gas flow rate

 $Q \rightarrow Q/N$

Worked Example 7.1 Worked Example 7.2

7.7S Aerosol Impactor

In general, for inertial motion of particles,

$$G(x) = f\left(Stk(x), Re, \frac{S}{D_j}\right)$$

where $Stk(x) = \frac{\tau(x)\overline{U}}{D}$

For given geometry (S/D_i)

$$0.5 = f(Stk_{50}, Re) \rightarrow Stk_{50} = f_1(Re)$$

From numerical and/or experimental analysis

Stk(x): almost independent of Re

Or for 500 < Re < 3000 and S/D > 1.5For circular nozzle, $Stk_{50} = 0.22$ For rectangular nozzle, $Stk_{50} = 0.53$

$$\therefore x_{50} = \left[\frac{9\mu DStk_{50}}{\rho_p UC_c}\right]^{1/2}$$

작은 입자를 잡으려면 노즐 입경을 즐이고, 유속을 올리는 방법과 C_c를 올 리는 방법이 있다.

C.를 올리려면 어떻게 해야 하나?

* Cascade impactor

- Measurement of particle size distribution
- Classification of particles

	Minimum	Efficiency		
	particle	(%)		
	size	(mass	Advantages	
Device	(µm)	basis)	T 1	Disadvantages
Gravitational	>50	<50	Low-pressure loss	Much space required
settler			maintenance	Low collection efficiency
Cyclone	5-25	50-90	Simplicity of design and maintenance Little floor space required Dry continuous disposal of collected dusts Low-to-moderate pressure loss Handles large particles Handles high dust loadings Temperature independent	Much head room required Low collection efficiency of small particles Sensitive to variable dust loadings and flow rates
Wet collectors			Simultaneous gas absorption and	Corrosion, erosion problems
Spray towers	>10	<80	particle removal	Added cost of wastewater
Cyclonic	>2.5	<80	Ability to cool and clean high-	treatment and reclamation
Impingement Venturi	>2.5 >0.5	<80 <99	temperature, moisture-laden gases	Low efficiency on submicron particles
			Corrosive gases and mists can be recovered and neutralized	Contamination of effluent stream
			Reduced dust explosion risk	by liquid entrainment
			Efficiency can be varied	Freezing problems in cold weather
				Reduction in buoyancy and plume rise
				Water vapor contributes to visible plume under some atmospheric conditions
Electrostatic	<1	95-99	99+% efficiency obtainable	Relatively high initial cost
precipitator			Very small particles can be	Precipitators are sensitive to
			collected	variable dust loadings or flow
			Particles may be collected wet or	rates Resistivity causes some material
			Pressure drops and power	to be economically uncollectable
			requirements are small compared	Precautions are required to
			with other high-efficiency collectors	safeguard personnel from high
			Maintenance is nominal unless	Collection efficiencies can
			corrosive or adhesive materials are handled	deteriorate gradually and imperceptibly
			Few moving parts	1 <u>1</u>
			Can be operated at high	
			temperatures(573 to 723 K)	
Fabric	<1	>99	Dry collection possible	Sensitivity to filtering velocity
filtration			Decrease of performance is	High-temperature gases must be
			Collection of small particles	coolea
			possible	(condensation)
			High efficiencies possible	Susceptibility of fabric to
			· •	chemical attack

Summary of Particulate Collection