Chapter 14. Radiation Heat Transfer

All substances at T above 0 K emit radiation.

"Thermal radiation"

 ρ (reflectivity: 반사율) ~ fraction of radiation falling on a body that is reflected.

 α (absorptivity: 흡수율) ~ fraction that is absorbed.

 τ (transmissivity: 투과율) ~ fraction that is transmitted.

 $\alpha+\rho+\tau=1$ Blackbody (특체): $\alpha=1$ (a body that absorbs all incident radiation)

Emission of radiation

Wavelength of radiation: 10⁻¹¹ cm to 10³ m

' important in heat flow: 0.1 to 100 μm

(visible light: $0.39 - 0.78 \mu m$)

고온일수록 짧은 파장의 복사열을 방출

(500 ℃ 이상에서는 가시광선보다 큰 파장에 의한 복사도 점차 중요해 짐)

Fig. 14.1. Energy distribution in spectra of blackbodies and gray bodies.

W_λ (monochromatic radiation power: 단색광 복사력): Monochromatic radiation emitted
from unit area in unit time divided by the wavelength

Fig. 14.1의 *y*축 값 (방사에너지는 온도와 파장에 의존)

radiation of a single wavelength

$$\varepsilon (emissivity) \equiv \frac{W}{W_b}$$
 (방사율)

emissive power of a blackbody (최대가능 방사력)

 ε_{λ} (monochromatic emissivity) $\equiv W_{\lambda}/W_{b,\lambda}$ 단색광 방사율

Gray body (회색체): \mathcal{E}_{λ} of a body is the same for all λ (단색광 방사율이 모든 파장에서 동일한 물체)

 ε of solids --- increases with T.

polished metals: $0.03 \sim 0.08$ oxidized metals: $0.6 \sim 0.85$ paper, boards: $0.65 \sim 0.95$

paints (Al계 paints 제외): 0.80 ~ 0.96

* Laws of blackbody radiation (흑체 복사 법칙)

Stefan-Boltzmann law:

$$W_b = \sigma T^4$$

Stefan-Boltzmann constant: $5.672 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$

Planck's law (distribution of energy in the spectrum of a blackbody):

$$W_{b,\lambda} = \frac{2\pi \mathbf{h} c^2 \lambda^{-5}}{e^{\mathbf{h} c/\mathbf{k} \lambda T} - 1} \qquad --- \text{Eq. (14.6)} \Rightarrow \text{Plots (Fig. 14.1)}$$
$$= \frac{C_1 \lambda^{-5}}{e^{C_2/\lambda T} - 1}$$

 $W_{b,\lambda}$: monochromatic emissive power of blackbody \mathbf{h} : Plank's constant c: speed of light λ : wavelength of radiation \mathbf{k} : Boltzmann's constant C_1, C_2 : constants

Relationship between Planck's law & Stefan-Boltzmann law:

Stefan-Boltzmann law

(즉, Stefan-Boltzmann 식은 Planck 식을 적분한 식)

Wien's displacement law (λ that gives the maximum $W_{b,\lambda}$):

$$T \lambda_{\max} = C$$

 \leftarrow Planck 식을 λ 에 대해 미분하고 이를 0으로 두어 구한 식 (T의 단위를 K, λ_{max} 의 단위를 μm 로 둘 경우 C는 2,890을 사용)

Absorption of Radiation by Opaque Solids

Opaque body (불투명체)

$$\rightarrow \tau = 0,$$
 $\therefore \alpha + \rho = 1$

Reflection (정반사 or 거울반사)
(반사)
: 매끄러운 표면에서의 반사
반사각은 입사각에 의존
diffuse reflection (난반사) or diffuse radiation (난복사)
: 거친 표면에서의 반사
일정한 반사각이 없이 모든 방향으로 반사
반사율과 흡수율이 입사각에 무관
보다 일반적인 경우임.

- * Absorptivity of a *gray body* the same for all wavelengths, like the emissivity 회색체의 표면이 난복사(난반사)한다면 monochromatic absorptivity도 radiant beam의 입사각에 무관
 - → Total absorptivity { equals the monochromatic absorptivity. is independent of the incident angle.

Kirchhoff's law (At T equil., the ratio of the total radiating power W of any body to its absorptivity α depends only on the T of the body):

$$\frac{W_1}{\alpha_1} = \frac{W_2}{\alpha_2}$$
 total radiating powers of 2 bodies absorptivities of 2 bodies

If the first body is a blackbody,

$$\alpha = 1 & W_1 = W_b = \frac{W_2}{\alpha_2}$$

$$\therefore \alpha_2 = \frac{W_2}{W_b} = \varepsilon_2$$

$$emissivity 의 정의$$

 \longrightarrow When any body is at T equilibrium, $\varepsilon = \alpha$

. Total radiation for a unit area of an opaque body:

$$\frac{q}{A} = \sigma \varepsilon T^4$$

