Chapter 3. Fluid Flow Phenomena

: 유체의 거동은 고체 경계(solid boundaries)의 유무에 따라 영향을 받음

Potential flow ↔ Boundary layer flow (포텐셜 흐름) (경계층 흐름)

Potential flow: 벽의 영향이 적은 지역(전단응력 무시 가능)

incompressible & zero viscosity인 ideal fluid 거동으로 해석

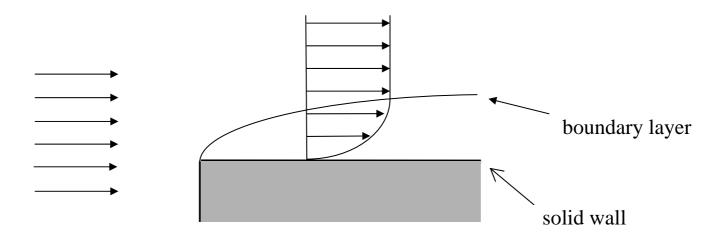
→ Newton 역학으로 기술 가능

(circulations나 eddies가 없는 irrotational flow,

friction이 없어 heat dissipation이 없음)

Boundary layer flow: 고체 벽면의 영향 하에 있는 유체의 흐름

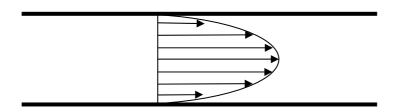
→ 이 경우 다음의 효과가 나타남


(coupling of velocity-gradient and shear-stress fields,

onset of turbulence,

formation and growth of boundary layers

separation of boundary layers from solid boundary)



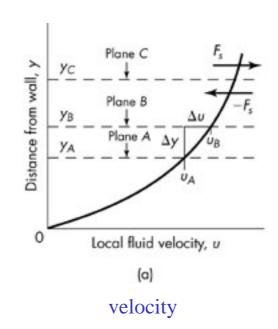
Velocity at wall: zero (no-slip boundary condition)

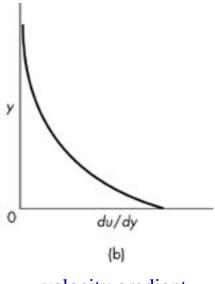
One-dimensional flow: A flow that has only one velocity component

(ex. Steady flow through straight pipe)

Steady (state) flow: flow invariant with time (the velocity at each location is constant)

Laminar Flow (층류)

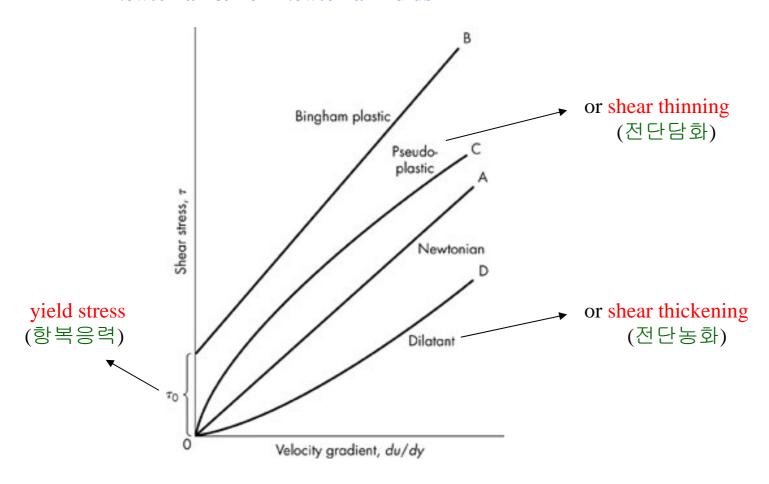

← At low velocities, fluids flow without lateral mixing, cross-current and eddies.


Velocity gradient (or shear rate): 속도기울기 (전단속도)

$$: \frac{du}{dy} \text{ (or } \gamma)$$

Shear stress (전단응력)

$$: \tau = \frac{F_s}{A_s}$$



velocity gradient (or shear rate)

Rheological Properties (유변물성)

Newtonian & non-Newtonian fluids

Time-dependent flow

Thixotropic: shear stress (τ) decreases with time for a given shear rate (du/dy)

Rheopectic: shear stress increases with time for a given shear rate

Viscosity (점도), μ

: shear stress와 shear rate 그래프의 기울기, shear stress와 shear rate간의 비례상수

$$\tau = \mu \frac{du}{dy}$$
: Newton's law ---- (3.3)

점도의 단위: Pa·s (kg/m·s), P (poise: g/cm·s), cP (1 Pa·s = 10 P = 1,000 cP 의 관계) (물의 점도: 약 1 cP)

Kinematic viscosity (동점도, or 운동학 점도)

$$v = \frac{\mu}{\rho}$$
 동점도의 단위: St (Stokes: cm²/s) (1 m²/s = 10⁴ St 의 관계)

Viscosity models

Newtonian fluids:

$$\tau = \mu \frac{du}{dv}$$

Power-law fluids:

$$\tau = K \frac{du^n}{dy} = K \left| \frac{du}{dy} \right|^{n-1} \frac{du}{dy}$$
K: flow consistency index n: power-law index (or flow)

n: power-law index (or flow behavior index)

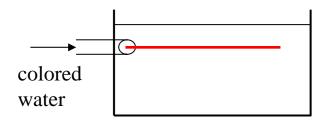
n=1, Newtonian fluids $(K = \mu)$

n<1, pseudo-plastic (shear thinning) fluids

n>1, dilatant (shear thickening) fluids

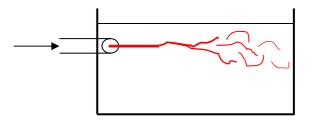
Bingham plastics:

$$\tau - \tau_o = K \frac{du}{dy}$$
 at $\tau > \tau_o$ τ_o : yield stress $\frac{du}{dy} = 0$ at $\tau < \tau_o$


Turbulence (난류)

Pressure drop (Δp)

$$\propto \begin{cases} v & \text{at low flow rates} \\ v^2 & \text{at high flow rates} \end{cases}$$


 Δp turbulent ν critical velocity

* An experiment by Osborne Reynolds

straight line, no cross mixing

→ laminar flow

wavy and gradually disappeared → turbulent flow

Reynolds number, Re: a dimensionless group

$$Re = \frac{D\overline{V}\rho}{\mu} = \frac{D\overline{V}}{v} : ---- (3.10)$$

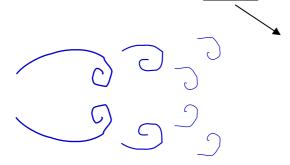
D: tube diameter

 \overline{V} : average velocity

 ρ : density

 μ : viscosity

 ν : kinematic viscosity

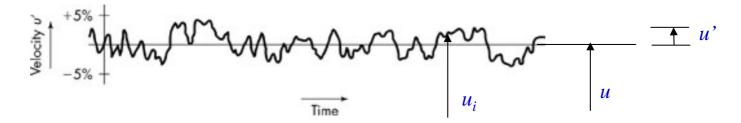

In a pipe flow,

Laminar region at Re<2,100

Turbulent region at Re>4,000

Transition region at 2,100<Re<4,000

Turbulent flow consists of eddies


energy dissipation

largest -- dimension of stream

smallest -- $10-100 \mu m$

- Deviating velocity (편차속도)

In one-dimensional turbulent flow,

$$u_i = u + u'$$
 $v_i = v'$ $w_i = w'$

cf.) In laminar flow,

$$u_i = u \quad v_i = 0 \quad w_i = 0$$

 u_i, v_i, w_i : instantaneous velocities (순간속도)

u, v, w: average velocities (평균속도)

u', v', w': deviating velocities (or fluctuating velocities) (편차속도 or 변동속도)

. time average of
$$u'$$
: $\frac{1}{t_0} \int_0^{t_0} u' dt = 0$

. time average of mean square of u':
$$\frac{1}{t_0} \int_0^{t_0} (u')^2 dt = \overline{(u')^2}$$

Isotropic turbulence (등방성 난류):
$$\overline{(u')^2} = \overline{(v')^2} = \overline{(w')^2}$$

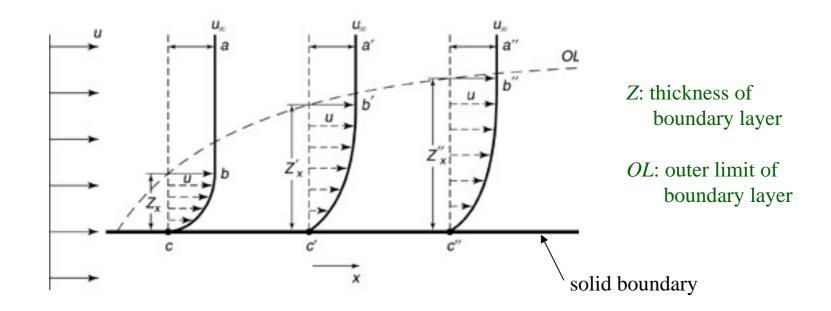
- Reynolds stress (or turbulent shear stress), τ_t
 - ← 난류에서는 층류 보다 훨씬 큰 shear force가 존재 (deviating velocity 때문) 따라서 점성응력 이외에 추가적인 난류전단응력(Reynolds 응력)을 고려해야 함.

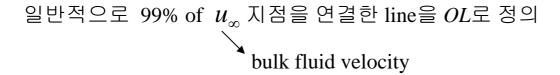
$$\tau_t = \rho \overline{u'v'}$$

- Eddy viscosity, E_{v}

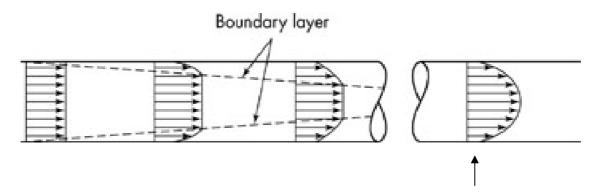
 \leftarrow 난류전단응력과 전단속도와의 관계에서 정의되는 점도 (eddy viscosity E_{v} 는 shear viscosity μ 와 유사하게 정의됨)

$$\tau_{t} = E_{v} \frac{du}{dy}$$


- Total shear stress in turbulent flow
 - ← viscous stress와 turbulent stress의 합


$$\tau = \tau_{v} + \tau_{t} = (\mu + E_{v}) \frac{du}{dy}$$

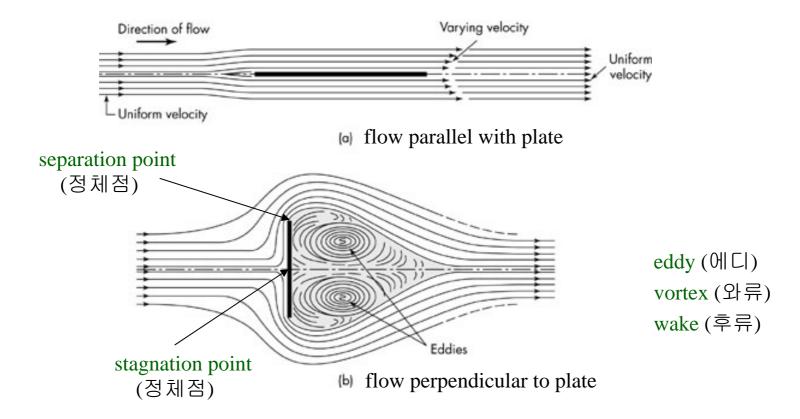
Boundary Layers (경계층)


: The part of moving fluid in which the fluid motion is influenced by a solid boundary

Development of boundary layer flow in pipe

fully developed flow (완전발달흐름) : 속도분포가 더 이상 변하지 않는 흐름

- Approximate length of pipe to reach fully developed flow, for laminar flow:


$$\frac{x_t}{D} = 0.05 \,\text{Re}$$

 x_t : transition length

D: diameter of pipe

ex.) ID 50 mm, Re=1,500
$$\rightarrow$$
 $x_t = 3.75 \text{ m}$

Boundary layer separation and wake formation

Related problems:

(Probs.) 3.1, 3.4, 3.5, 3.9 and 3.12

