Unit Operations Chapter 7. Flow Past Immersed Objects

Chapter 7. Flow Past Immersed Objects
Drag and Drag Coefficients (&2 & sta %)

* Drag
: The force in the direction of flow exerted by the fluid on the solid

(SEYSNA SHMIF DA OIXl= &)
. wall drag: drag from wall shear (2 &=

. form drag: “  pressure (S EHER)
ini luid approach velocity, ——
* Drag coefficient, Cy : ,r‘ﬂ pr:uer E _b_c ﬁjﬁjﬁ_hﬁ%_ﬁ
b for immersed solids £ o //[T\
¢ HE
cf.) friction factor, f i . '
T ; I.r"'u': E—
for flow through conduits - »P‘“‘%»éf "
Fluid streamlines
o= FD / Ap FD-: totgl drag L Eq (71)
,ou02 /2 A,: projected area
approaching velocity —~
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Particle Reynolds number (Re for a particle in a fluid):

D,u
Re, = Pp%o - Eq. (7.2)
Y7,

D,: characteristic length (S & Z 0], 2 particle diameter)

* Drag coefficient of typical shapes
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. For low Re (Re, << 1)
- Creeping flow (01 S& &)

Fp =37 uuyD,  forasphere (Stokes” law)  --- Eq. (7.3)

— s ep = 24 - Eq. (7.4)

Re,

Direction of flow S

. For ReID > 20

—> Separation occurs

. For high Re (103 < Re, < 3x10°)
-> Cp =0.40-0.45

Front boundary layer is still laminar i
y lay ,_,

. For high Re (Rep > 3x10°) Amem—me L ==
T e ——
> Cp=0.10 M =
Front boundary layer becomes turbulent turbulent flow in boundary layer (Re,=3 x 105)

cf.) Re,= 3% 10° : critical Reynolds number for drag (B: stagnation pt., C: separation pt.)
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. Cp vs. Re, for a cylinder
—> similar to that for a sphere, but C is not exactly proportional to Rep'1
. Cp vs. Re,, for a disk
— does not show Cp, drop at Re,, ¢ (“bIuff body™)
Cp for a disk is nearly 1 at Re,, > 2,000.

* Form drag and streamlining
Minimizing the from drag

—> streamlined body (ex., airfoil)

Pressure at stagnation point, p,:

Ps — Po — uO2

yo, 2

< by Bernoulli equation (from A to B)

[ Uo: velocity of undisturbed fluid
Po: pressure in undisturbed fluid
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Flow through Beds of Solids

F

ool

A DN XS SHotH s 2= S RHAL S = ALz
3 & filtration, flow of liquid and gas through packed towers,

ion-exchange reactor, catalytic reactor)

“actual channels”
(irregular, tortuous channels)

- “uniform circular channels”

n channels

SO
channel length L

cross-sectional
area of the bed

D
particle diameter equivalent channel diameter

€q
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Surface-volume ratio for particles

. {Sp:47er2=7sz2
For spheres, —~= — 4 4

3 3
Vp :gﬂ'Rp :EDp

Vp Dy
S 6/D
For other spheres, |2 = 0 or @ = P
Vp @Dy SRAY

\‘ sphericity (=& &) See Table 7.1

Porosity (&= ), or void fraction: &

— particle volume fraction in the bed: 1—¢

6

Total surface area: N7z Dggl =SpL(1-¢)

— PsYp

total particle volume

1
Void volume in the bed: SgLé& = Znﬂ DquL
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Combining the above two equations,

2 g
Pea =3P Pr1

ex.) €=04, Dy, =0440,D, .. Dy, ;%Dp

o _ +—» superficial (or empty-tower) velocity
Average velocity in the channels: |V =

o |

Y YA 2
. Pressure drop at low Re, (< 1): Ap _3Nu _ 32MVou (1-¢)

9 :
I A, - correction factor

Hagen-Poiseuille equation “channels are tortuous”

(4 =2.0)

— Ap  150Vou (1-&)? .
P_ . 0‘; ( 5 ) . Kozeny-Carman equation
L oD, ¢

\% Darcy’s lawE [1&(q « A_p)
y7i
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. Pressure drop at high Re, (> 1000) :

Ap  1.75pVy" (1—¢)
L oD, ¢

An equation covering the entire range of the flow rates

: Burke-Plummer equation

«<— Viscous losses & kinetic energy losses are additive.

Ap  150Vpu (1-¢)? +1.75,)\702 (1-¢)

: Ergun equation

- Eq. (7.22)
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Motion of Particles through Fluids

* Mechanism of particle motion

Three forces action on a particle through a fluid:

1) external force (gravitational or centrifugal), F, Fp Fy
2) buoyant force, F, F,
3) drag force, Fp
® or [
FE2 22 BHigaeZ &= F
€
g2 0lsZdal BHiEee 2 &= Fo
Fe
The resultant force (F) on the particle: F, - F, — Fp
du _
F=m— 0ff (HotH,
i 0l CH& ot

- : du
The acceleration of the particle: it



Unit Operations

Chapter 7. Flow Past Immersed Objects

2
CD UO pAp

du
—— | =F-R-Fo
. dt / [ \
/ ma, mpa,
acceleration Pp

of particle (Archimedes’s

principle)

{ A, = projected area of particle
Up = U

Motion from gravitational force

If the external force is gravity, a, is g.

du_ pp-p CpUpA,

dt Pp 2m

- Eq. (7.30)
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* Terminal velocity (S5 T)
M =0 A Sotole e hte S=SIH0l et drag0l St
A0 (et ZFAotH & 0 00l 20t & =50l 0l 2AH 2

otel =
i
(-

St
= .

| = maximum attainable velocityOl 4 Ol £ terminal velocity u, ct

Al (7.30)01l A du/dt=0 22 S

Uy :\/ZQ(pp —p)m --- Eq. (7.33)

ApppCpp

Motion of spherical particles

1 3 2
m:EﬁDIO Pp A,=—7D,” 0|22
4 — p)D
Uy = 9(Pp = P)Dy --- Eq. (7.37)
Cpp

gitierm
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AtlowRe, (<<1) < Stokes’ law range

Co - 24

D —E +— Fp =37 uuD,
9D, (pp - p)
U =—->—P Stokes’ law --- Eq. (7.40)
18u
For 1,000 < Re, < 200,000 < Newton’s law range
2.2
Cp =044 Fp =0.0557D,"u " p

—p)D
ut=1.75\/g(p »~P)Dy Newton’s law - Eq. (7.43)
o
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* Settling and rise of bubbles and drops

Drops of liquid or bubbles of gas
—> change their shapes

Form drag —> flattens drops
Surface tension > keeps spherical shapes
Drop size | = surface energy per volume 7
Drop or bubble < 0.5 mm - nearly spherical
. Cp & U, are about the same as solid sphere,
but not exactly the same.
(. circulation of fluid inside a drop)
—> Total drag is somewhat less than
a rigid sphere
Large drops become flattened ellipsoids

or may oscillate from oblate to prolate form.

Rise velocity, cm/'s
=

B
i} —_—— == i‘igid sphere
h [calevbated from Fig. 7.7)
B j- Air i wabar ™
I — e Slokes” bow
I I
0 ] 2 3 4 5 6 8 10

Bubkle diometer, mm

Rise velocity of air bubbles in water

Drops larger than about 10 mm in diameter usually break apart.
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Fluidization (7= 3H)

Consider a fluid (liquid or gas) passing up through a bed of solid particles.

RO 2R0IK 2= [ pressure drop (Ap )

—> Ergun equation (Eq. 7.22) Fixed bed +—— Fluidized bed
= I
AL S0 SO0 Wek Ap 2F T'"'“"“ Eﬁ:/%
e & Xk2l drag forcedt S It ‘ p: 2 ;
5 Al
- Particles become suspended in the fluid. l £ LA e Whofbsd
R4
Air g .
Fully suspended particles in fluid - : -
' minimum fluidization < e
velocity (| A R S5t T) SN

Fluidized Bed (== : [
uidized Bed ( ) Fig. 7.11. Pressure drop & bed height

vs. superficial velocity
A vertical tube partly filled with a fine granular material.

open at the top, porous at the bottom, air flow from below
(Fig. 7.11)
Z=giCiem
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* Minimum fluidization velocity (2| AR S5 5), Vo
. Net upward force: Ap A
. Net downward force: AL(1—¢)(pp, —p) 9
/

net gravitational & buoyant force ™ volume of solid particles

At incipient fluidization (ZJ| = & 3}):

A
Lp =g(1-em)(pp—p)| € Two forces are equal
X

I N\

Ergun equation minimum porosity(Zl A 5= &)
(Eq. 7.22)

JIA

FI=S

kol

150/“V0|\/| (1 €M) 1. 7510V0|\/| 1

2D 2 5M3 CD D

= g(pp - p)
3V

HEE0Li= AE80HAMe Us2 A= 4:

2=t
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}D

—

Qli

9

b

|A=S

kOII

ISV, 27

_9(pp—p) &y° o, D
1501  1-gy

1/2
. - ®.D . 3
With Re, > 10%, Vg, ~| — p 9(Pp ~P)ew
1.75p

With Re, <1, Vou =~

< &y 0.40~0.45
for roughly spherical particles

Related problems:

(Probs.) 7.1,7.5,7.6, 7.11 and 7.17

2=t
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