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[FYI]Process capability (24%9)

+ Suppose you need to choose a raw material supplier among company A
and company B. You received a database containing quality of a raw
material from each company and plotted them with spec. limits (LSL
and USL) that you product requests. Which one would you choose?

20 40 60 80 100 120 140 20 40 60 80 100 120 140

+ How to quantify this capability?

+ Which statistics are useful in describing this capability?




[FYI]Process capability (Cont.)

+ C, (or PCR, process capability ratio)

USL — LSL
Ceo = 6o

+ C,, (or PCRy) for one-sided limit uand o: calculated from data

C, = min(USL—,u | ,u—LSLJ

30 30
+ In general, C, (or C,,) = 1.33 is minimum requirement

% Stat > quality tools > capability analysis
% Note: Cpk and Cp are only useful for a process which is stable



Least squares regression (3 £#4%3A9)

« What we will cover

Correlation

F 3

Covariance

Least squares: 2 variables

Why minimize errors?

ANOVA

Confidence intervals

Prediction intervals

What do the least squares
assumptions mean?

Correlation, covariance,
and least squares

—

» Additional topics

Nonlinear terms

Integer variables

Residuals

Leverage, discrepancy and influence

Correlation and causation

Interpreting software output

Least squares: more
than 2 variables

Box, G.E.P., Use and abuse of regression, Technometrics, 8 (4), 625-629, 1966




[FYI]Least squares vs. interpolation

+ Given the data, there are two choices when we want to know the value
ofyatx = (x, + x,)/2

ylk

+ least squares? or interpolation?

+ Interpolation is recommended when data are subject to negligible
experimental error (or noise)

+ Ex. In using steam tables

+ Otherwise, least squares is recommended.



Least squares - usage examples (#& o)

+ Quantify relationship between 2 variables (or 2 sets of variables):

+ Manager: How does yield from the lactic acid batch fermentation relate to

the purity of sucrose?

+ Engineer: The yield can be predicted from sucrose purity with an error of

plus/minus 8%
+ Manager: And how about the relationship between yield and glucose
purity?

+ Engineer: Over the range of our historical data, there is no discernible

relationship.




Least squares - usage examples

+ Two general applications
+ Predictive modeling — usually when an exact model form is unknown.
+ Modeling data trends in order to predict future y values
+ Simulation — usually when parameters in the model are unknown.

+ Getting parameter values in the known model form (e.g., calculate

activation energy from reaction data)
+ Terminology (201)

+ Yy : response variables, output variables, dependent variables,

+ X :input variables, regressor variables, independent variables




Review: covariance (Z&4h)

+ Consider measurements from a gas cylinder: temperature (K) and
pressure (kPa).

+ Ideal gas law applies under moderate condition: pV = nRT
+ Fixed volume, V=20 X 103m3 =20 L
+ Moles of gas, n = 14.1 mols of chlorine gas, (1 kg gas)

+ Gas constant, R = 8.314 J/(mol.K)

+ Simplify the ideal gas law to: p = B,T, where

_m®
V

b




Review: covariance (Cont.)

Cylinder Cylinder Room
temperature (K) pressure (kPa) humidity (%)

273 1600 42
285 1670 48
297 1730 45
309 1830 49
321 1880 41
333 1920 46
345 2000 48
357 2100 48
369 2170 45
381 2200 49

Mean 327 1910 46.1
Variance 1320 43267 8.1




Review: covariance (Cont.)

+ Formal definition:
cov(x,y) =E{(x-X)(y-¥)} whereE(z)=1
1. Calculate deviation variables: T—-T and p-p
+ Subtracting off mean centers the vector at zero.
2. Multiply the centered values: (T -T )(p- D)
+ 16740 10080 5400 1440 180 60 1620 5700 10920 15660
3. Calculate the expected value (mean): 6780
4. Covariance has units: [K.kPa]
c.f) Covariance between temperature and humidity is 202
% Covariance with itself is the variance:

cov(x,x) =V (x) = E{(x—X)(x—X)}



Review: correlation (&A=s4)

Q: Which one (pressure and humidity) has stronger relationship with
temperature?

+ Covariance depends on units: e.g. different covariance for grams vs
kilograms

+ Correlation removes the scaling effect:

cov(x,y) _ E{(x-X)(y-¥)}

0,0, 0,0,

corr(x,y) =

+ Divides by the units of x and y: dimensionless result
—1<corr(x,y)=p,, <1
+ Gas cylinder example:
+ corr(temperature, pressure) = 0.997

+ corr(temperature, humidity) = 0.380



Review: correlation (cont.)

+ Which one has highest/lowest/negative/positive correlation?

+ Which one has (almost) no correlation?
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+ What does that mean if correlation of two variables is -1/+1?




Review: correlation (cont.)

Negative correlation g A relationship, but no correlation
<
o r(x,y) = -0.918 ° r(x,y) = -0.161
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Least squares? Least squares regression?

¥ Regression is the act of choosing the “best” values for the unknown
parameters in a model on the basis of a set of measured data.

+ Linear regression is the special case where the model is linear in the
parameters. A straight line has the form:

y=a,+qX+E€

+ There are many possible ways to define the “best” fit. However, the
most commonly used measure for bestness is the sum of squared
residuals.

+ Least sum of squares of errors - least squares in short.




Least squares (regression)

+ Itis the basis for :
+ DOE (Design of Experiments)
+ Latent variable methods

+ We consider only 2 (sets of) variables : x and y (or x’s and y)
+ Simple least squares

+ Multiple least squares

+ Generalized least squares




Simple least squares

+ Wind tunnel example

+ How can we find the best line that describe the following data?

1600 — .
; e Data from wind tunnel experiments:
1200~ ® Drag force (F) at various wind velocities
z E
<800 ®
C o °
400 C ®
E 1 ’ Oy e Sy e | Sy S o
00 o 20 40 60 80
v, m/s
v (/s) 10 20 30 40 50 60 70 80
F(N) 25 70 380 550 610 1220 830 1450




Wind tunnel example (cont.)

+ From the plot, a linear line seems adequate. = .
y=a0+a1x+e hz:aooz_ .
: o °
+ At a data point (x;, y,), error between the line L S R

and the point is: (see the figure on the right)
€ =Y;i— Ay — AX
+ Earlier, least squares means least sum of

squares of errors. For all data points, sum

of squares of errors is:

S, Ze —Z(yi a, —a.x,)’

i=1

+ We need to find model parameters a, and a, that minimize S,.

+ “Least squares”



Wind tunnel example (cont.)

+ How to find model parameters?
+ TakealookatSr. S.=2.¢ =2, —a,—ax)
=1 =1
+ S.1is a parabolic function w.r.t a, and a,

and sign of a2 and a’ are plus.

+ S, becomes minimum where

oS, =O&8Sr Y

04, 0,

oS, oS, .
?%:_22(}’5 —d, —a,X;) a—al:_zz[(yf_ao — X)X ]

OZZJ’I-—Z%—Z%% O:inyj—Zaoxf—Zale
+ Rearranging and nay + (33 = 3, (33, ay + (Z 3 =S %,

solving for a, and a,
a — ”inyf_zxfzyi = =

”fo _(in)z




Wind tunnel example (cont.)

+ Calculations

v (m/s) 10 20 30 40 50 60 70 80

F(N) 25 70 380 550 610 1220 830 1450
i X; Vi x? X; ¥
1 10 25 100 250
2 20 70 400 1.400
3 30 380 900 11.400
4 40 550 1,600 22,000
5 50 610 2,500 30,500
6 60 1,220 3,600 73,200
7 70 830 4,900 58.100
8 80 1.450 6.400|  116.000
) 360 5,135 20,400 |  312.850




Wind tunnel example (cont.)

+ Calculations

E:%:% V= 2135 =641 .875
8(312.,850)—360(35,135
a, = (512.859) G, ):19.47024

8(20,400) — (360’
a, = 641.875 —19.47024 (45) = —234 2857

F=-234 2857 +19.47024 v

+ This is called simple least squares.



Wind tunnel example (cont.)

+ Results
1600 [
L E
1200 [
= 8001=
S £
400 [
0 L 1 | >
20 40 60 80
i v, m/s
Is this OK with you?



General modeling procedure

Define modeling
objective

Variable selection
Identify the response variables (i.e., y variables), and
the regressor variables (i.e., x variables) that are to be
considered

\ 4

Design of experiment
Design an experiment and use it to generate the data
that will be used to fit the model

A 4

Define the model
Choose an appropriate form for the model

\ 4

Fit the model
Estimate values for the parameters in the model

Does the model
fit?

_ Statistical tools +
prior knowledge

Use the model



Simple least squares

+ Summary
+ Model form: y=a,+ax+e

v S.=>e=>(y-a,-ax) becomes minimizes where 0 _ 0& 05, _ 0.
=1 =1 04, 09,

+ Rearranging and solving for a, and a,

na, +(fo)a1 =20 (Zxr:)ﬂo +(fo2}'?1 =2 X,

‘ a, = ”ngyfz_zxfzyg ay :}_a]?—c
HZJCE —(in)z

+ Question: what if our model we want to find is non-linear?
Ex. Activation energy in rate constant
k=k,e 7

=» Linearize !



Linearization

+ Want to model non-linear relationships between independent (x) and
dependent (y) variables.

1. Make a simple linear model through a suitable transformation.
y=flx)+e 2> y=a,+ax+e

2. Use previous results (simple least squares)

a, = ”sz'yf _foz,yz‘ a, :J_)—CIIJ_C
ny x; —(sz.)z

% Caution: transformation also changes P.D.F of variables (and errors)

We will discuss about this in model assessment.



Y= oef

c
LS
©
N
S
@
@
=
=3

Intercept = In a,

Linearization (Cont.)

y

logy

Linearization

Slope = 3,

log x

Intercept = log a,

Linearization

Slope = B;/a,

Intercept = 1/a;




Polynomial regression
+ For quadratic form
y=a,+ax+ax’+e
+ Sum of squares
T n 2
Sr:z,e?:z f—ﬂ'ﬂ—ﬂlxi_azxg
i=1 i=1 Q) )

Again, S, has a parabolic shape w.r.t a,, a,, and a,. with plus signs of

a’,a’,and a;.

0S

: :_ZZ(yi — 8, X -a,x’)=0
oa,
0S
aai - _22 X (Y —ay —aX _azxiz) =0
B _ _ZZ X (Vi —8 —aX —a,%) =0
oa,



Polynomial regression (Cont.)

+ Rearranging the previous equations gives
(n)a, +(zx,-)a1+(2xf)ag=zyf n in inz a, Zyi
(D )ao+(2 Jan+( X )as = 3w, » DN2% 2N A= %Y,
(Zx:'z)an+(zxs)a1+(zx:)az:foyf inz ZX? in4 a, inzyi
the above equations can be solved easily. (three unknowns and three
equations.)

+ For general polynomials
y=a,+ax+a,x +-+ax" +e
+ From the results of two cases (y = a, + ax &y = a, + ax + a,x?)

OS5 _ 05 _ 2O _
o0a, 09 oa

r

0

m

we need to solve (m+1) linear algebraic equations for (m+1) parameters.



Multiple least squares

+ Consider when there are more than two independent variables, x,, x.,

..., X, = Tegression plane.

Y=q,+aX +a,X,+---+a X +E€

+ For 2-D case, y = a, + a,x, + a,x,.

+ Again, S, has a parabolic shape w.r.t a, a,, a,

S, =

os,
oa,
oS,
oay

oS,

oa,

Z(yi — &, _alxl,i _a2X2,i)2

_2Z(yi —8, —a X — a2X2,i) =0

= _22 X (yi —8, QX — a2X2,i) =0

_22 Xy (Yi —8, —a X — a2X2,i) =0

X

X




Multiple least squares (Cont.)

+ Rearranging and solve for a,, a, and a, gives

n lel‘ inr a, zyr
2 _
¥ ¥ 1i Er 2 ( 174
DAL TR IETED IV VR TS S DI
Z X Z XX Z Xri )95 Z X2:)i |

+ For an m-dimensional plane,
y=a,+aX +aX, +--+a X +e
+ Same as in general polynomials,

dS, _ 0S5, m_as,_o
0a, 09 oa

m

we need to solve (m+1) linear algebraic equations for (m+1) parameters.



General least squares

+ The following form includes all cases (simple least squares, polynomial
regression, multiple regression)

=-a.z.+a.z +a.z,.+-+a z +e
YV 0<0 141 242

m o m

where z,, z,,...,z, :m+]1 different functions

= m

Ex. Simple and multiple least squares

Lo=12 =x,4,=x,,---,£, =x

m mn

polynomial regression

0 1 2 m
Lo=x =1/4=x,24,=x",---. /£ =X

m
+ Same as before,

oS, 05 _ 05 0
0a, 04 oa,,

r r

we need to solve (m+1) linear algebraic equations for (m+1) parameters.



Quantification of errors

Total sum of squares around
the mean for the response
variable, y

S, =) &
= Z(yi —8yZg; — 7 _"’_amzm,i)z

Sum of squares of residuals around the
regression line

Measurement

ay + ax;




Quantification of errors (Cont.)

1 —\2 St = Sr
Sy:\/ﬁz(yi_y) _\/n—l S%_\/n—(m+1)

Standard deviation of y Standard error of predicted y
- quantify appropriateness of
regression

(a) the spread of the data around the (b) the spread of the data
mean of the dependent variable around the best-fit line

4

e

(a) (b)

B




Quantification of errors (Cont.)

+ Coefficients of determination, R2

S;—S,  The amount of variability in the data explained
S, by the regression model.

R2 =1when S, = 0 : perfect fit (a regression curve passes through data points)

R2 = 0 when S, =S, : as bad as doing nothing

)v

' ®Cee
o® © 4
-——'r._' [ J
.. &
®
o

(@) (b)

It is evident from the figures that a parabola is adequate.
R2 of (b) is higher than that of (a)



Quantification of errors (Cont.)

+ Warning! : R? = 1 does not guarantee that the model is adequate,
nor the model will predict new data well.

+ It is possible to force R? to be one by adding as many terms as there are

observations.
+ S, can be big when variance of random error is large.

(Usual assumption on error is that error is random is unpredictable)

Ma ¥ Y
®
g e
® [
L] ® o
®

(a) (b)

Practice using Minitab

(1) Wind tunnel example with higher polynomials

(2) Simple regression with increasing random noise




Confidence intervals - coefficients

+ Coefficients in the regression model have confidence interval.

—a.z. +az +a,z,+-+a z +e
Y 0<0 141 242

m- - m

+ Why? They are also statistics like X & s. That is, they are numerical
quantities calculated in a sample (not entire population). They are

estimated values of parameters.

Value that depends on P.D.F of

.. the statistic & confidence level a
Statistic that we want to find i % %
its confidence interval

Standard error of the statistic

statistic A Ostatistic
X Zoc/ 2 Oy / \/ﬁ
X tv,a/ 2 SX / \/ﬁ

% The standard error of a statistic is the standard deviation of the sampling distribution
of that statistic



Confidence intervals — coefficients (cont.)

+ Matrix representation of GLS

y=a,z,+taz +a,z,+-+a z +e

m m

» y=2a+e —matrix of the calculated values of the basis functions
at the measured values of the independent variable

—observed valued of the dependent variable
—unknown coefficients

—residuals

Ly Ln Ly yT = LJ& Vy o ynJ
ZUE Z]E m2 . .
Z= : . : a' = Lﬂﬂ a, --- ﬂmj m+1: number of coefficients
' n: number of data points
Z, 7. z | ef=la & el




Confidence intervals — coefficients (Cont.)

+ Example

Fitting quadratic polynomials to five data points

X | -1.0 —-05 00 05 1.0
y 1.0 05 0.0 05 20

y=a,+aX+a,x +e

T 10| [1 -1.0 1.0] &
05 |1 -05 025)a,| |6 Three unknowns

00|={1 0.0 00 | & [+/€| Fiveequations
0.5 05 025|a,| |e,

1
20| |1 10 10 e

Can you solve this problem?



Confidence intervals — coefficients (Cont.)

+ Solutions

y=2a+e Sum of squares of errors

S, =>.¢'=e'e=(y-2a) (y-2a)
oS,
oa

-0 — (Z'zR=Z2"y

Called “normal equations”

1. LU decomposition or other methods to solve L.A.E
(Z7zh=2"y ="Ax=b"

2. Matrix inversion
(z7zh=2"y =a=(2'z)'Z"y

computationally not efficient, but statistically useful



Confidence intervals — coefficients (Cont.)
+ Matrix inversion approach
a=(2'z)'Z"y

Denote Zﬁl as the diagonal element of (ZT Z)_1

Confidence interval of estimated coefficients

2 —-1
ai—litn—(m+1),a/2 SVZii
X

b (mapar2 Student t statistics

S,/ = 5 Standard error of estimate
Y% \n—(m+1)

Minitab exercise with
What if confidence intervals contain zero? the wind tunnel example



Model assessment

+ When we do not know the model form, we have to assess the model
before use it after we fit a regression model.

+ However, in order to assess the model and make inferences about the
parameters and predictions from the model, we will have to employ

statistics and make some assumptions about the nature of the disturbance.
+ Tools for model assessment

+ S, /., R?(quantitative) (= not recommended)

y/x?
+ Residual Plots (qualitative)

+ Normal probability chart (qualitative or quantitative)
+ Test for lack of fit (quantitative)

+ This is used when the dataset includes replicates. It is based on

analysis of variance (ANOVA).



Model assessment - assumptions

+ What is the most desirable errors in regression ?

y=a,z,taz +a,z,+-+a z +e

m - m

\ 4

+ Assumptions on error
+ Error is additive y=a,+ax +€ y= X,)e
+ The variance of the error is constant and is not related to values of the

response or values of the regressor variables.
+ There is no error associated with the values of the regressor variables.

+ Error is a random variable with Gaussian distribution N(0,52) (2 usually

unknown)



Model assessment - residual plots

+ Recall the assumptions on error

+ Error is not related to the values of response or regressor variables.

Then, assumptions will not be valid if the model is wrong.
+ Following residual plots will reveal this.

+ Residuals vs. regressor variables

+ Residuals vs. fitted y values

+ Residuals vs. “lurking” variables (i.e. time or order)

=>» These plots will show “some patterns” when a model is inadequate.



Model assessment - residual plots

+ Examples
! o0 o g
e ® o‘.
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Model assessment - normal probability plot

+ Recall the assumptions on error

+ Error is a random variable with Gaussian distribution N(0, ¢2) (o2 usually

unknown)

Then, errors will fall onto a straight line (y = x) in a normal probability
plot. (especially useful when the number of data points is large)

: Normal probability plot

-3

=315
-35 -2 25 -2 15 1 06 0O 08 1 148 2 25 3 35



Model assessment - normal probability plot

+ Using normality test. (hypothesis test)
+ Quantitative. Useful when data are small.
+ H, : data is normally distributes.

+ H, : data is NOT normally distributed.

Probability Plot of SRES1

erma! At a levels greater than
’ Mean 001072 0.941, there is evidence that
N o o1 the data do not follow a
1 P-Yalue 0941 . . -
normal distribution.

Percent
(%]
=




Model assessment — ANOVA (Test for lack of fit)

+ The variance breakdown

=

e

+ Ratio of SS./SS, follows F distribution when corrected with degree of

freedom.

+ Ifregression is not meaningful, the ratio (SS,/SS,) is small and SS, = SS..



Model assessment — ANOVA (Test for lack of fit)

ANOVA Table

Source of Var. | Sum of Degrees of Mean Square Fo
Squares Freedom

Regression SSy P MSr=SSr/p MSg/ MS¢

(Residual) error | SSg n-p MSg=SS¢/(n-p)

Total SS; n-1

Compare F, to the critical value Fp .o

What we are doing is a test of hypothesis.
We are testing the hypothesis:

Ho! By==5,=0
H; : at least one parameter Is not equal to zero.



[FYI]Meaning of a p-value in hypothesis test

+ A measure of how much evidence we have against the null hypothesis.
+ Null hypothesis (H,) represents the hypothesis of no change or no effect.

+ Much research involves making a hypothesis and then collecting data to
test that hypothesis. Then researchers will collect data and measure the

consistency of this data with the null hypothesis.

+ A small p-value is evidence against the null hypothesis while a large p-value

means little or no evidence against the null hypothesis.

+ Traditionally, researchers will reject a null hypothesis if the p-value is less

than 0.05 (o = 0.05).

—> p-value can mean that the possibility that you can be wrong when rejecting

the null hypothesis.



Integer variables in the model

+ Integer variables 0 and 1 can represent qualitative variables.
+ Example: raw material from Spain, India, or Vietnam
YY=Qa,+ax, +...+aqx+rd +r,d,+r,d,
+ d,=1and d, = 0 and d, = 0 for Spain
+ d,=0andd, =1and d, = o for India

+ d,=0and d, = 0 and d, = 1 for Vietnam

+ Often called indicator variables for this reason




Integer variables in the model

+ Example . ,
+ Want to predict yield when two different impeller WW oL AT
used. Yield = f{temperature, impeller type) o T
) ) L OO SR
+ Build two different models VY. ey
(one for axial, one for radial) axial radial

+ Build one model using indicator variable. y =a, + a,T + rd

+y=a,+aT+rd

+ d; = o for axial, d; = 1 for radial




Leverage effect

+ Unusual observations influence the model parameters and our
interpretation

a A

y y

7

X »7

Outliers have an over-proportional effect on resulting regression curves.

+ To avoid the leverage effect,
+ Remove outliers before regression (but do not delete without investigation)

+ Use different S, (no longer least squares)



Causal relation and correlation

+ Causal relation
+ Cause and effect relation
+ Has physical/chemical /engineering meanings
+ x and y are not interchangeable
+ Direction exists.
+ Correlation
+ (Linear) relationship between two variables
+ No physical/chemical/engineering meanings.
+ Average height of 20’s men vs. year

+ x and y are interchangeable
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