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[FYI]Process capability (공정능력)

Suppose you need to choose a raw material supplier among company A 

and company B. You received a database containing quality of a raw 

material from each company and plotted them with spec. limits (LSL 

and USL) that you product requests. Which one would you choose?

How to quantify this capability?

Which statistics are useful in describing this capability?
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[FYI]Process capability (Cont.)

Cp (or PCR, process capability ratio)

Cpk (or PCRk) for one-sided limit

In general, Cp (or Cpk) = 1.33 is minimum requirement

※Stat > quality tools > capability analysis

※Note: Cpk and Cp are only useful for a process which is stable
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Least squares regression (최소자승회귀법)

• What we will cover
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[FYI]Least squares vs. interpolation

Given the data, there are two choices when we want to know the value 

of y at x = (x1 + x2)/2

least squares? or interpolation?

Interpolation is recommended when data are subject to negligible 

experimental error (or noise)

Ex. In using steam tables

Otherwise, least squares is recommended.
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Least squares - usage examples (사용 예)

Quantify relationship between 2 variables (or 2 sets of variables):

Manager: How does yield from the lactic acid batch fermentation relate to 

the purity of sucrose?

Engineer: The yield can be predicted from sucrose purity with an error of 

plus/minus 8%

Manager: And how about the relationship between yield and glucose 

purity?

Engineer: Over the range of our historical data, there is no discernible 

relationship.
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Least squares - usage examples

Two general applications

Predictive modeling – usually when an exact model form is unknown.

Modeling data trends in order to predict future y values

Simulation – usually when parameters in the model are unknown.

Getting parameter values in the known model form (e.g., calculate 

activation energy from reaction data)

Terminology (용어)

y : response variables, output variables, dependent variables, 

x : input variables, regressor variables, independent variables
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Review: covariance (공분산)

Consider measurements from a gas cylinder: temperature (K) and 

pressure (kPa).

Ideal gas law applies under moderate condition: pV = nRT

Fixed volume, V = 20 × 10−3m3 = 20 L

Moles of gas, n = 14.1 mols of chlorine gas, (1 kg gas)

Gas constant, R = 8.314 J/(mol.K)

Simplify the ideal gas law to: p = b1T, where
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Review: covariance (Cont.)
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Review: covariance (Cont.)

Formal definition:

1. Calculate deviation variables: 

Subtracting off mean centers the vector at zero.

2. Multiply the centered values:

16740 10080 5400 1440 180 60 1620 5700 10920 15660

3. Calculate the expected value (mean): 6780

4. Covariance has units: [K.kPa]

c.f) Covariance between temperature and humidity is 202

※ Covariance with itself is the variance:
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Review: correlation (상관관계)

Q: Which one (pressure and humidity) has stronger relationship with 

temperature?

Covariance depends on units: e.g. different covariance for grams vs 

kilograms

Correlation removes the scaling effect:

Divides by the units of x and y: dimensionless result

Gas cylinder example:

corr(temperature, pressure) = 0.997

corr(temperature, humidity) = 0.380
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Review: correlation (cont.)

Which one has highest/lowest/negative/positive correlation?

Which one has (almost) no correlation?

What does that mean if correlation of two variables is -1/+1?
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Review: correlation (cont.)
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Least squares? Least squares regression?

Regression is the act of choosing the “best” values for the unknown 

parameters in a model on the basis of a set of measured data.

Linear regression is the special case where the model is linear in the 

parameters.  A straight line has the form:

There are many possible ways to define the “best” fit. However, the 

most commonly used measure for bestness is the sum of squared 

residuals.

Least sum of squares of errors  least squares in short.
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Least squares (regression)

It is the basis for :

DOE (Design of Experiments)

Latent variable methods

We consider only 2 (sets of) variables : x and y (or x’s and y)

Simple least squares

Multiple least squares

Generalized least squares
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Simple least squares

Wind tunnel example

How can we find the best line that describe the following data?
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Data from wind tunnel experiments:
Drag force (F) at various wind velocities



Wind tunnel example (cont.)

From the plot, a linear line seems adequate.

y = a0 + a1x + e

At a data point (xi, yi), error between the line

and the point is: (see the figure on the right)

ei = yi – a0 – a1xi

Earlier, least squares means least sum of 

squares of errors. For all data points, sum

of squares of errors is:

We need to find model parameters a0 and a1 that minimize Sr.

“Least squares”
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Wind tunnel example (cont.)

How to find model parameters?

Take a look at Sr.

Sr is a parabolic function w.r.t ao and a1

and sign of                       are plus.

Sr becomes minimum where
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Wind tunnel example (cont.)

Calculations 
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Wind tunnel example (cont.)

Calculations

This is called simple least squares. 
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Wind tunnel example (cont.)

Results 

Is this OK with you?
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General modeling procedure
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Define modeling 
objective

Variable selection
Identify the response variables (i.e., y variables), and 
the regressor variables (i.e., x variables) that are to be 

considered

Design of experiment
Design an experiment and use it to generate the data 

that will be used to fit the model

Define the model
Choose an appropriate form for the model

Fit the model
Estimate values for the parameters in the model

Does the model 
fit?

N

Y

Use the model

Statistical tools + 
prior knowledge



Simple least squares

Summary

Model form: y = a0 + a1x + e

becomes minimizes  where

Rearranging and solving for a0 and a1

Question: what if our model we want to find is non-linear?

Ex. Activation energy in rate constant

 Linearize !
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Linearization

Want to model non-linear relationships between independent (x) and 

dependent (y) variables.

1. Make a simple linear model through a suitable transformation.

y = f(x) + e  y = a0 + a1x + e

2. Use previous results (simple least squares)

※Caution: transformation also changes P.D.F of variables (and errors)

We will discuss about this in model assessment.

2010-11-22 공정 모형 및 해석, 유준©  2010 23



Linearization (Cont.)
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Polynomial regression

For quadratic form

Sum of squares 

Again, Sr has a parabolic shape w.r.t a0, a1, and a2. with plus signs of 
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Polynomial regression (Cont.)

Rearranging the previous equations gives

the above equations can be solved easily. (three unknowns and three 

equations.)

For general polynomials

From the results of two cases (y = a0 + a1x & y = a0 + a1x + a2x2)

we need to solve (m+1) linear algebraic equations for (m+1) parameters.
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Multiple least squares

Consider  when there are more than two independent variables, x1, x2, 

…, xm.  regression plane.

For 2-D case, y = a0 + a1x1 + a2x2.

Again, Sr has a parabolic shape w.r.t a0, a1, a2
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Multiple least squares (Cont.)

Rearranging and solve for a0, a1 and a2 gives

For an m-dimensional plane, 

Same as in general polynomials,

we need to solve (m+1) linear algebraic equations for (m+1) parameters.
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General least squares

The following form includes all cases (simple least squares, polynomial 

regression, multiple regression)

Ex. Simple and multiple least squares

polynomial regression

Same as before, 

we need to solve (m+1) linear algebraic equations for (m+1) parameters.
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Quantification of errors
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Quantification of errors (Cont.)
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Quantification of errors (Cont.)

Coefficients of determination, R2
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Quantification of errors (Cont.)

Warning! : R2 ≈ 1 does not guarantee that the model is adequate, 

nor the model will predict new data well. 

It is possible to force R2 to be one by adding as many terms as there are 

observations.

Sr can be big when variance of random error is large.

(Usual assumption on error  is  that error is random is unpredictable)

Practice using Minitab

(1) Wind tunnel example with higher polynomials

(2) Simple regression with increasing random noise
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Confidence intervals - coefficients

Coefficients in the regression model have confidence interval.

Why? They are also statistics like     & s. That is, they are numerical 

quantities calculated in a sample (not entire population). They are 

estimated values of parameters.

2010-11-22 공정 모형 및 해석, 유준©  2010 34

statisticstatistic A  Statistic that we want to find
its confidence interval

Standard error of the statistic

Value that depends on P.D.F of
the statistic & confidence level a

x

statistic A statistic

za/2

tn,a/2

x
x n

x
xs n

※The standard error of a statistic is the standard deviation of the sampling distribution 
of that statistic



Confidence intervals – coefficients (cont.)

Matrix representation of GLS
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Confidence intervals – coefficients (Cont.)

Example

Fitting quadratic polynomials to five data points
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Confidence intervals – coefficients (Cont.)

Solutions

1. LU decomposition or other methods to solve L.A.E

2. Matrix inversion

computationally not efficient, but statistically useful
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Confidence intervals – coefficients (Cont.)

Matrix inversion approach

Denote             as the diagonal element of              

Confidence interval of estimated coefficients
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Model assessment

When we do not know the model form, we have to assess the model 

before use it after we fit a regression model.

However, in order to assess the model and make inferences about the 

parameters and predictions from the model, we will have to employ 

statistics and make some assumptions about the nature of the disturbance.

Tools for model assessment

Sy/x, R
2 (quantitative) ( not recommended)

Residual Plots (qualitative)

Normal probability chart (qualitative or quantitative)

Test for lack of fit (quantitative)

This is used when the dataset includes replicates.  It is based on 

analysis of variance (ANOVA).
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Model assessment - assumptions

What is the most desirable errors in regression ?

Assumptions on error

Error is additive

The variance of the error is constant and is not related to values of the 

response or values of the regressor variables.

There is no error associated with the values of the regressor variables.

Error is a random variable with Gaussian distribution N(0,2) (2  usually 

unknown)
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Model assessment – residual plots

Recall the assumptions on error

Error is not related to the values of response or regressor variables.

Then, assumptions will not be valid if the model is wrong.

Following residual plots will reveal this.

Residuals vs. regressor variables

Residuals vs. fitted y values

Residuals vs. “lurking” variables (i.e. time or order)

 These plots will show “some patterns” when a model is inadequate.
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Model assessment – residual plots

Examples
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Model assessment – normal probability plot

Recall the assumptions on error

Error is a random variable with Gaussian distribution N(0, 2 ) (2 usually 

unknown)

Then, errors will fall onto a straight line (y = x) in a normal probability 

plot. (especially useful when the number of data points is large)
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Model assessment – normal probability plot

Using normality test. (hypothesis test)

Quantitative. Useful when data are small.

Ho : data is normally distributes.

H1 : data is NOT normally distributed.
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At a levels greater than 

0.941, there is evidence that 

the data do not follow a 

normal distribution.



Model assessment – ANOVA (Test for lack of fit)

The variance breakdown

Ratio of SSr/SSe follows F distribution when corrected with degree of 

freedom.

If regression is not meaningful, the ratio (SSr/SSe) is small and SSt ≒ SSe.
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Model assessment – ANOVA (Test for lack of fit)
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ANOVA Table 

Source of Var. Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F0 

Regression SSR p MSR=SSR/p MSR/ MSE 

(Residual) error SSE n-p MSE=SSE/(n-p)  

Total SSt n-1   

 

Compare F0 to the critical value Fp,n-p;a 

 
What we are doing is a test of hypothesis. 

We are testing the hypothesis: 

  H0 : 0p0  bb   

  H1 : at least one parameter is not equal to zero. 
 



[FYI]Meaning of a p-value in hypothesis test

A measure of how much evidence we have against the null hypothesis.

Null hypothesis (H0) represents the hypothesis of no change or no effect.

Much research involves making a hypothesis and then collecting data to 

test that hypothesis. Then researchers will collect data and measure the 

consistency of this data with the null hypothesis.

A small p-value is evidence against the null hypothesis while a large p-value 

means little or no evidence against the null hypothesis.

Traditionally, researchers will reject a null hypothesis if the p-value is less 

than 0.05 (a = 0.05).

 p-value can mean that the possibility that you can be wrong when rejecting 

the null hypothesis.
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Integer variables in the model

Integer variables 0 and 1 can represent qualitative variables.

Example: raw material from Spain, India, or Vietnam

y = a0 + a1x1 + . . . + akxk + r1d1 + r2d2 + r3d3

d1 = 1 and d2 = 0 and d3 = 0 for Spain

d1 = 0 and d2 = 1 and d3 = 0 for India

d1 = 0 and d2 = 0 and d3 = 1 for Vietnam

Often called indicator variables for this reason
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Integer variables in the model

Example

Want to predict yield when two different impeller

used.  Yield = f(temperature, impeller  type)

Build two different models

(one for axial, one for radial)

Build one model using indicator variable.   y = a0 + a1T + rd

y = a0 + a1T + rdi

di = 0 for axial, di = 1 for radial
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Leverage effect

Unusual observations influence the model parameters and our 

interpretation

To avoid the leverage effect,

Remove outliers before regression (but do not delete without investigation)

Use different Sr (no longer least squares)
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Outliers have an over-proportional effect on resulting regression curves.



Causal relation and correlation

Causal relation

Cause and effect relation

Has physical/chemical/engineering meanings

x and y are not interchangeable

Direction exists.

Correlation

(Linear) relationship between two variables

No physical/chemical/engineering meanings.

Average height of 20’s men vs. year

x and y are interchangeable
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Home work (1주일 후 강의시간에 제출할 것. 5 페이지 초과시 0점 처리)
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(이때 b는 2로 할 것.)


