Designs for experimental studies

※Objectives

• Screening studies

: discovering which of a large number of variations affect response

• Empirical model building studies

: true model unknown. Use approximate models, $y = f(x_1, x_2, ..., x_k)$

2 k factorial designs

2 2 factorial design

Two independent variables:

Study effect of T & C on yield *y*.

Main effects of T & C →

Main effect of C

Two measures of effect of C

 $54 - 60 = -6$ $68 - 72 = -4$

$$
avg. = -5
$$

Main effect of T

Two measures of effect of T

$$
68 - 54 = 14
$$

72 - 60 = 12
avg. = 13 \% 13 % yield/20 °C change in T

- Interaction between T & C
	- **→** Do variables T & C act independent on *y*?
	- → Or, is effect of T (or C) same at both levels of C (or T)?
	- \rightarrow If effect is different \rightarrow T x C interaction.

Visualize this with an interaction plot.

Main effect of C

Two measures of effect of C $54 - 60 = -6$ $85 - 72 = 13$

Lines in interaction plots will be far from being parallel \rightarrow **Large interaction** between T & C

Main effect of T

Two measures of effect of T $85 - 54 = 31$

 $72 - 60 = 12$

- \rightarrow Analysis by least squares
	- Design matrix (condition) & experimental results

※Center: usually current condition

Transform *x* variable (T & C) to scaled variables \quad * why?: remove scale effect

$$
x_{i} = \frac{\text{variable} - \text{centerpoint}}{\text{Range}/2}
$$
\n
$$
x_{1} = \frac{T - 170 \text{°C}}{10}
$$
\n
$$
x_{2} = \frac{C - 30\%}{10}
$$
\n
$$
x_{3} = \frac{120 \text{°C}}{10}
$$
\n
$$
x_{4} = \frac{120 \text{°C}}{10}
$$
\n
$$
x_{5} = \frac{120 \text{°C}}{10}
$$
\n
$$
x_{6} = \frac{120 \text{°C}}{10}
$$
\n
$$
x_{7} = \frac{120 \text{°C}}{10}
$$
\n
$$
x_{8} = \frac{120 \text{°C}}{10}
$$

 \rightarrow Regression coefficients (usually from S/W)

$$
\mathbf{a} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}
$$

Columns of **X** : orthogonal (i.e., $\mathbf{x}_i \cdot \mathbf{x}_j = \mathbf{x}_i^T \mathbf{x}_j = 0$)

$$
\mathbf{a} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}
$$

Columns of **X** : orthogonal (i.e., $\mathbf{x}_i \cdot \mathbf{x}_j = \mathbf{x}_i^T \mathbf{x}_j = 0$)

$$
\Rightarrow \sum x_0 x_1 = \sum x_0 x_2 = \sum x_0 (x_1 x_2) = \sum x_1 x_2 \sum x_1 (x_1 x_2) = \sum x_2 (x_1 x_2) = 0
$$

$$
\bullet \text{ i.e., } a_i = \frac{\sum x_i y_i}{\sum x_i^2}
$$

Each a_i can be calculated independently.

e.g.,
$$
a_0 = \frac{y_1 + y_2 + y_3 + y_4}{4}
$$

 a_i = effect of changing variable x_i from 0 to +1.

 \rightarrow Confidence interval of a_i

$$
\text{var}(\mathbf{a}) = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \sigma^2 \Rightarrow \text{var}(a_i) = \frac{\sigma^2}{\sum x_i^2} \qquad \frac{a_i}{\text{ord}}
$$

95% C.I $a_i \pm z_{0.025} \sqrt{\sigma^2 / \sum x_i^2}$

aⁱ are uncorrelated due to thogonality of design

 $\frac{1}{2}$ $\sqrt{2^2 + 2^2}$ 95% C.I $a_i \pm z_{0.025} \sqrt{\sigma^2 / \sum x_i^2}$
95% C.I $a_i \pm t_{v,0.025} \sqrt{s^2 / \sum x_i^2}$ (when σ unknown)

Estimating *s* 2 : (1) from historical database (2) replicates (corner points or center points)

2 3 factorial design

 2^3 3 variables 2 levels \overline{a} Qualitative variable

 \rightarrow Three variables: T, C, and catalyst type (A and B)

 \rightarrow Denote: $x_3 = -1$ for catalyst A

 $= +1$ for catalyst B

2 3 factorial (= 8 runs): all combination of the 2 levels of the 3 variables.

- \rightarrow Analysis by least squares
	- \rightarrow Fit model:

 $0 = 0_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_1 x_2 x_4 + a_1 x_3 + a_2 x_2 x_3 + a_2 x_3 x_4$

In matrix-vector notation, $y = Xa$

 \rightarrow Again, by least squares

$$
\mathbf{a} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y} \Rightarrow a_i = \frac{\sum x_i y}{\sum x_i^2}
$$

C.I of a_i var(**a**) = $(\mathbf{X}^T \mathbf{X})$ $\sigma^2 \rightarrow var(a) - \sigma^2$ $var(\mathbf{a}) = (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2 \Rightarrow var(a_i) = \frac{\sigma^2}{\sum_{i} x_i^2}$ *i a x* σ σ **a**) = $(\mathbf{X}^T \mathbf{X})^{-1} \sigma^2 \Rightarrow \text{var}(a_i) = \frac{\sigma^2}{\sum x_i}$ 95% C.I $a_i \pm z_{0.025} \sqrt{\sigma^2 / (\sum x_i^2)}$ $\frac{1}{2}$ $\sqrt{2^2 + 2^2}$ 95% C.I $a_i \pm z_{0.025} \sqrt{\sigma^2 / \sum x_i^2}$
95% C.I $a_i \pm t_{v,0.025} \sqrt{s^2 / \sum x_i^2}$ (when σ unknown)

6 C.I
$$
a_i \pm t_{\nu,0.025} \sqrt{s^2 / \sum x_i^2}
$$
 (when σ unknown

2 k factorial design

→ Desirable features of factorial designs

 \rightarrow Othogonal \rightarrow easy calculations

 \rightarrow uncorrelated estimates a_i

- **→** Good variation in all variables
- \rightarrow Efficient use of all data points
- \rightarrow The only way to discover interactions between variables
- \rightarrow Allows experiments to be performed in blocks
- \rightarrow Allows designs of increasing order to be build up sequentially

Design for 2nd order models

If 1st order + interaction model exhibits "Lack of fit" \rightarrow Include x_1^2, x_2^2, \cdots terms But we need more than 2 level designs. \rightarrow Central composite design or 3 level factorials *y*

Central composite design $(k = 2)$

(1) Start with 2^k design with center points

(2) Add vertices of star (for k=2, $\alpha = \sqrt{2}$)

(3) Run experiments & analysis

Design for 2nd order models (cont.)

 \rightarrow Values of α

Cube plot for 3 variables (factors)

15 runs For central composite $design (k = 3)$

\rightarrow 3 level factorial

- $3²$ 2 variables at all combinations of 3 levels
- 3 3 **27** runs for 3 variables

※Full quadratic model (assume 123 interaction is negligible.) egligible.)
 $a_1^2 + a_2 x_2^2 + a_3 x_3^2$

1 quadratic model (assume 123 interaction is negligible.)
 $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3 + a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$

Allows for approximation of many response.

Design for 2nd order models (cont.)

※A t-statistic for curvature

Minitab uses ANOVA for testing curvature when center point replicates exist.