Designs for experimental studies

*Objectives

Screening studies

: discovering which of a large number of variations affect response

• Empirical model building studies

: true model unknown. Use approximate models, $y = f(x_1, x_2, ..., x_k)$

♦ 2^k factorial designs

2² factorial design

Two independent variables:

	range
Temperature (T)	160°C ~ 180°C
Concentration (C)	20% ~ 40%

- 2² factorial design (Cont.)
- Main effects of T & C

Main effect of C

Two measures of effect of C

54 - 60 = -668 - 72 = -4

avg.
$$= -5$$

Main effect of T

Two measures of effect of T

$$68 - 54 = 14$$

 $72 - 60 = 12$

avg. = $13 \times 13 \%$ yield/20 °C change in T

- Interaction between T & C
 - → Do variables T & C act independent on y?
 - ✤ Or, is effect of T (or C) same at both levels of C (or T)?
 - → If effect is different \rightarrow T x C interaction.

Visualize this with an interaction plot.

Main effect of C

Two measures of effect of C 54 - 60 = -685 - 72 = 13

Lines in interaction plots will be far from being parallel \rightarrow Large interaction between T & C

Main effect of T

Two measures of effect of T 85 - 54 = 31

72 - 60 = 12

- ♦ Analysis by least squares
 - ✤ Design matrix (condition) & experimental results

Т	C	y
160	20	60
180	20	72
160	40	54
180	40	68

*Center: usually current condition

✤ Transform x variable (T & C) to scaled variables ※why?: remove scale effect

$$x_{i} = \frac{\text{variable} - \text{centerpoint}}{\text{Range / 2}}$$

$$x_{1} = \frac{T - 170^{\circ}C}{10}$$

$$x_{2} = \frac{C - 30\%}{10}$$
Range of x_{i} 's
$$-1$$

$$x_{2} = \frac{C - 30\%}{10}$$

$$-1$$

$$x_{1} = \frac{10}{10}$$

$$x_{2} = \frac{10}{10}$$

$$x_{3} = \frac{10}{10}$$

$$x_{4} = \frac{10}{10}$$

$$x_{5} = \frac{10}{10}$$

$$x_{6} = \frac{10}{10}$$

$$x_{7} = \frac{10}{10}$$

공정 모형 및 해석, 유 준 0

✤ Regression coefficients (usually from S/W)

$$\mathbf{a} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

Columns of **X** : orthogonal (i.e., $\mathbf{x}_i \cdot \mathbf{x}_j = \mathbf{x}_i^T \mathbf{x}_j = 0$)

$$\Rightarrow \sum x_0 x_1 = \sum x_0 x_2 = \sum x_0 (x_1 x_2) = \sum x_1 x_2 \sum x_1 (x_1 x_2) = \sum x_2 (x_1 x_2) = 0$$

• i.e.,
$$a_i = \frac{\sum x_i y_i}{\sum x_i^2}$$

Each a_i can be calculated independently.

e.g.,
$$a_0 = \frac{y_1 + y_2 + y_3 + y_4}{4}$$

 a_i = effect of changing variable x_i from 0 to +1.

→ Confidence interval of a_i

$$\operatorname{var}(\mathbf{a}) = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1} \sigma^{2} \Longrightarrow \operatorname{var}(a_{i}) = \frac{\sigma^{2}}{\sum x_{i}^{2}}$$
95% C.I $a_{i} \pm z_{0.025} \sqrt{\sigma^{2} / \sum x_{i}^{2}}$

 a_i are uncorrelated due to orthogonality of design

95% C.I $a_i \pm t_{v,0.025} \sqrt{s^2 / \sum x_i^2}$ (when σ unknown)

Estimating *s*² : (1) from historical database (2) replicates (corner points or center points)

2³ factorial design

2³ 3 variables 2 levels Qualitative variable

✤ Three variables: T, C, and catalyst type (A and B)

→ Denote: $x_3 = -1$ for catalyst A

= +1 for catalyst B

→ 2^3 factorial (= 8 runs): all combination of the 2 levels of the 3 variables.

		_		_			-	
	x _o	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$x_1 x_2$	$x_1 x_3$	$x_{2}x_{3}$	$x_1 x_2 x_3$
Design	+1	-1	-1	-1	+1	+1	+1	-1
Motrix V	+1	+1	-1	-1	-1	-1	+1	+1
Matrix, A	+1	-1	+1	-1	-1	+1	-1	+1
	+1	+1	+1	-1	+1	-1	-1	-1
	+1	-1	-1	+1	+1	-1	-1	+1
	+1	+1	-1	+1	-1	+1	-1	-1
	+1	-1	+1	+1	-1	-1	+1	-1
	+1	+1	+1	+1	+1	+1	+1	+1

2010-11-24

- Analysis by least squares
 - ✤ Fit model:

 $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_{12} x_1 x_2 + a_{13} x_1 x_3 + a_{23} x_2 x_3 + a_{123} x_1 x_2 x_3$

In matrix-vector notation, $\mathbf{y} = \mathbf{X}\mathbf{a}$

✤ Again, by least squares

$$\mathbf{a} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y} \Longrightarrow a_i = \frac{\sum x_i y}{\sum x_i^2}$$

C.I of a_i $\operatorname{var}(\mathbf{a}) = (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2 \Rightarrow \operatorname{var}(a_i) = \frac{\sigma^2}{\sum x_i^2}$ 95% C.I $a_i \pm z_{0.025} \sqrt{\sigma^2 / \sum x_i^2}$ 95% C.I $a_i \pm t_{v,0.025} \sqrt{s^2 / \sum x_i^2}$ (when σ unknown)

2^k factorial design

Desirable features of factorial designs

→ Othogonal → easy calculations

 \rightarrow uncorrelated estimates a_i

- ✤ Good variation in all variables
- ✤ Efficient use of all data points
- ✤ The only way to discover interactions between variables
- ✤ Allows experiments to be performed in blocks
- ✤ Allows designs of increasing order to be build up sequentially

Design for 2nd order models

◆ If 1st order + interaction model exhibits "Lack of fit"
 → Include x₁², x₂², … terms
 y
 But we need more than 2 level designs.
 → Central composite design or 3 level factorials

Central composite design (k = 2)

(1) Start with 2^k design with center points

(2) Add vertices of star (for k=2, $\alpha = \sqrt{2}$)

(3) Run experiments & analysis

()			-
(1)	<i>x</i> ₁	X_2	
	-1	-1	
	+1	-1	
	-1	+1	9 runs
	+1	+1	For central
	0	0	design $(k = 2)$
(2)	-α	0	
	+α	0	
	0	-α	
	0	+α	

Design for 2nd order models (cont.)

• Values of α

k	design	α
2	2^2	$\sqrt{2}$
3	2 ³	$\sqrt{3}$
4	24	$\sqrt{4}$

Cube plot for 3 variables (factors)

15 runs For central composite design (k = 3)

✤ 3 level factorial

- 3^2 2 variables at all combinations of 3 levels
- 3^3 **27** runs for 3 variables

* Full quadratic model (assume 123 interaction is negligible.)

 $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_{12} x_1 x_2 + a_{13} x_1 x_3 + a_{23} x_2 x_3 + a_{11} x_1^2 + a_{22} x_2^2 + a_{33} x_3^2$

Allows for approximation of many response.

2010-11-24

Design for 2nd order models (cont.)

*A t-statistic for curvature

Minitab uses ANOVA for testing curvature when center point replicates exist.