Exercise with Minitab

- When you have replicates.
 - You're a process engineer @ a semiconductor plant who wants to determine factors affecting thickness of epitaxial layer on silicon wafer. The main factors (or input variables) you think are (deposition) time and (arsenic) flowrate. Assume only linear relationship.
 - ✤ Solution
 - 1. 2² factorial design with 4 replicates @ corners

🚬 MINITAB - Untitled				_ 8 ×
<u>File E</u> dit <u>M</u> anip <u>C</u> alc	<u>Stat</u> <u>G</u> raph E <u>d</u> itor <u>W</u> indov	v <u>H</u> elp		
	Basic Statistics ► Regression ►			
🕮 Session	ANOVA •			
	<u>D</u> 0E ►	<u>F</u> actorial >	<u>C</u> reate Factorial Design	
2/07/	Control Charts	<u>R</u> esponse Surface →	Define Custom Factorial Design	
3/21/Q	Quality Tools	Mi <u>x</u> ture ►	Analyza Exctorial Design	
Welcome to Minits	Reliability/Survival 🔹 🕨	<u>T</u> aguchi 🕨 🕨	Anayze Factorial Design	
	Multivariate	Man Rév Dan Sau	Factorial Flow	
	Time <u>S</u> eries	Moally Design	Contour/Surface (Wireframe) Plots	
	<u>T</u> ables •	Display Design	Overlaid Contour Plot	
	Nonparametrics		Hesponse Optimizer	

stat>DOE>Factorial>create Factorial Design

2010-11-24

3. Run experiments according to design matrix

III Worksheet 2 ***								
÷	C1	C2	C3	C4	C5-T	C6		
	StdOrder	RunOrder	CenterPt	Blocks	Time	Flowrate		
1	11	1	1	1	Short	59		
2	15	2	1	1	Short	59		
3	3	3	1	1	Short	59		
4	2	4	1	1	Long	55		
5	9	5	1	1	Short	55		
6	8	6	1	1	Long	59		
7	7	7	1	1	Short	59		
8	10	8	1	1	Long	55		
9	1	9	1	1	Short	55		
10	4	10	1	1	Long	59		
11	12	11	1	1	Long	59		
12	5	12	1	1	Short	55		
13	16	13	1	1	Long	59		
14	6	14	1	1	Long	55		
15	13	15	1	1	Short	55		
16	14	16	1	1	Long	55		
• •	I				1	1		
			• Why?					

4. Analysis of experimental results

Using all analysis tools from least squares & main/interaction plots

DOE>Factorial>Analyze Factorial Design

🚬 MINITAB - Untitled			
<u>File E</u> dit <u>M</u> anip <u>C</u> alc	<u>Stat</u> <u>G</u> raph E <u>d</u> itor <u>W</u> indow	<u>H</u> elp	
	Basic Statistics	IK ## -=-	▉▙ ╔⊘ ᠉◢ <mark>◙┋❶᠌ॿॱ</mark>
🗮 Session	ANOVA	Frankasia	Curata Escherial During
Factors:	Control Charts	Response Surface	Define Custom Factorial Design
Runs: Blocks: non	ε <u>Q</u> uality Loois ► Reliability/Survival ►	Mi <u>x</u> ture ► Taguchi ►	Analyze Factorial Design Factorial Plots
All terms are fr	<u>M</u> ultivariate ► ∈ Time <u>S</u> eries ► <u>T</u> ables ►.	<u>M</u> odify Design <u>D</u> isplay Design	– Co <u>n</u> tour/Surface (Wireframe) Plots Overlaid Contour Plot
	<u>N</u> onparametrics ► <u>E</u> DA ►		Response Optimizer
	Power and Sample Size 🔸		

4. Analysis of experimental results (cont.)

	Analyze Factoria	Design				
	07 thìokn	Bes <u>B</u> es	ponses: i okness		-	
			Ierms	s <u>P</u> rediction.	·	
	Select		<u>G</u> raphs Resu <u>l</u> ts Weights	<u>S</u> torage	Analyze Factorial De	esign - Terms
Analyze Factorial Design - Gran	phs 2 ffects Plots 7 Normal 7 Pareto Alpha: 0.05	<u> </u>	<u></u> <u>O</u> K	Cancel	Include terms in the n	nodel up through order: 2.
C4 Blocks C6 Flowrate C7 thickness P C7	, regular <u>CS</u> tandardized <u>C</u> Deleted				A:Time B:Flowrate	A:Time B:Flowrate AB
B	iesidual Plots Individual plots I Histogram Normal plot Essiduals versus fits Esuri nana					< Cross Default
Select	∑carini ene "Residuals versus ⊻ariables: 				I Include <u>b</u> locks in t I Include center <u>p</u> oir	he model
Help	<u>O</u> K Cancel				Help	<u>O</u> K Cancel

2010-11-24

(a) ANOVA table (\because we have replicates)

Estimated Effects and Coefficients for thickness (coded units)

Term	Effect	Coef	SE Coef	Т	Р
Constant		14.3884	0.03606	399.05	0.000
Time	0.8369	0.4184	0.03606	11.60	0.000
Flowrate	-0.0681	-0.0341	0.03606	-0.94	0.363
Time*Flowrate	0.0324	0.0162	0.03606	0.45	0.661
			_ /		
S = 0.144228	R-Sq = 9	1.88% R	-Sq(adj)	= 89.85%	

Analysis of Variance for thickness (coded units)

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
Main Effects	2	2.82000	2.82000	1.41000	67.78	0.000
2-Way Interactions	1	0.00419	0.00419	0.00419	0.20	0.661
Residual Error	12	0.24962	0.24962	0.02080		
Pure Error	12	0.24962	0.24962	0.02080		
Total	15	3.07382				

Unusual Observations for thickness

0bs Std0rder thickness Fit SE Fit Residual St Resid 11 12 14.4150 14.7890 0.0721 -0.3740 -2.99R

R denotes an observation with a large standardized residual.

Estimated Coefficients for thickness using data in uncoded units

Term Constant	Coef 15.3592
Time Flowrate	-0.04291
Time+Flowrate	

(b) Residual plots

(c) Plots for effects

You can also determine which factors have significant effects.

Alternatively, main/interaction plot

- Depending on your goal, you can refine a prediction model by selecting significant factors (variables) only.
 - \rightarrow less # of coefficients
 - \rightarrow more degree of freedom
 - \rightarrow more accurate estimate of C.I ($S_{y/x}$ can decrease)

This is very useful even when you have **many factors** and **no replicates**.

Principle of sparsity of effects: the system (process) is usually dominated by the main effects and low-order interactions. That is, the three factor and higher-order interactions are usually negligible.

Response Surface Methods (RSM)

♦ RSM

- Objective: optimize a process
 (or system) using mathematical
 & statistical techniques.
- But, the process is usually unknown.
 (i.e., relationships between x & y
 variables are unknown.)

- → (1) The First step of RSM is to *find a (approximate) model* of the process using least squares (& DOE).
- → (2) Next step is to *improve process operation* by moving to a better operating point using the model.
- → (3) Repeat this until optimum is reached.

FYI (For Your Information)

Response surface?

 $y = a_0 + a_1 x_1 + a_2 x_2 + a_{12} x_1 x_2$

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_{12} x_1 x_2 + a_{11} x_1^2 + a_{22} x_2^2$$

FYI (For Your Information)

✤ COST costs too much to find optimum when interaction exists.

✤ Compare two cases

RSM (cont.)

- General procedure
 - Perform (fractional) factorial design around current operating conditions & fit a linear model form

 $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_{12} x_1 x_2 + a_{13} x_1 x_3 + a_{23} x_2 x_3 + a_{123} x_1 x_2 x_3$

2. Calculate direction of S.A. & perform experiments along this direction until response doesn't improve. (step size to be determined carefully)

Point *A*: 40 minutes, 157°F, y = 40.5Point *B*: 45 minutes, 159°F, y = 51.3Point *C*: 50 minutes, 161°F, y = 59.6Point *D*: 55 minutes, 163°F, y = 67.1Point *E*: 60 minutes, 165°F, y = 63.6Point *F*: 65 minutes, 167°F, y = 60.7

RSM (cont.)

- 3. Lay down a new factorial design.
- 4. Repeat steps $1 \sim 3$ until linear model is insufficient.
 - Curvature shows up.
 - 2-factor interaction dominate main effects.
- **5.** Estimate a quadratic model if curvature and/or interaction is large relative to main effects.
 - Add star points \rightarrow central composite design
 - Or three-level design

 $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_{12} x_1 x_2 + a_{13} x_1 x_3 + a_{23} x_2 x_3 + a_{11} x_1^2 + a_{22} x_2^2 + a_{33} x_3^2$

6. Plot response contour and move towards to best conditions (most statistical software will do this)

RSM Exercise

Yield y = f(T, S)

Current operating conditions

- **T** = 325 K
- S = 0.75 g/L
- Profit = \$407

Step 1

Experiment	Τ	S	Profit
1	_	_	193
2	+	_	310
3	_	+	468
4	+	+	571

$$\hat{y} = 385.6 + 55x_T + 134x_S - 3.75x_Tx_S$$

Step 2

Derection of S.A

$$= \left(\begin{array}{ccc} \frac{\partial y}{\partial x_T} & \frac{\partial y}{\partial x_S} \end{array} \right) \cong \left(\begin{array}{ccc} 55 & 134 \end{array} \right)$$

experiment 5 6 7
profit \$669 \$688 \$463

2010-11-24

공정 모형 및 해석, 유 준 0

RSM Exercise

Step 3

Experiment	Т	S	Profit
8	-	_	694
9	+	_	725
10	_	+	620
11	+	+	642
6	0 (335 K)	0 (1.97 g/L)	688

$$\hat{y} = 670 + 13x_T - 39x_S - 2.4x_T x_S$$

Profit (12) = 716 < profit (9)

 \rightarrow Strong interaction

Step 5

300

Contours of profit per kilogram (\$)

Mixture design

- ✤ Mixture design
 - Ordinary factorial design with a constraint

▶ $0 \le x_A, x_B, x_C \le 1, x_A + x_B + x_C = 1$

→ Of course, RSM can be used to determine best mixture.

Mixture design (cont.)

Example: Product design (development)

Mixture design (cont.)

Example: Functional Polymer Development

Mitsubishi Chemicals

Mixture design (cont.)

♦ (Advanced) Mixture design example

