
3. Design of CSTRs I

Apr/04 METU-NCC 1

o Single CSTR 1

- Design equation

- Substitute FA0 = v0CA0

- Space time τ

- 1st order rxn assume

- Rearranging 
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3. Design of CSTRs II

Apr/04 METU-NCC 2

o Single CSTR 2

- CA = CA0(1 - X)

- Damköhler number ⇒ dimensionless number

• quick estimate of the degree on conversion 

achieved by continuous reactors
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3. Design of CSTRs III

Apr/04 METU-NCC 3

o Single CSTR 3

- Damköhler number for a 1st order irrev. rxn

- Damköhler number for a 2nd order irrev. rxn

- Rule of thumb

• if Da < 0.1, then X < 0.1

• if Da > 10, then X > 0.9

☞ 1st order rxn, X = Da/(1 + Da)
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3. Design of CSTRs IV

Apr/04 METU-NCC 4

o CSTR in series 1

- 1st order irrev. rxn with no change in volumetric flow 

rate, effluent of the first reactor

- For 2nd reactor

- Solving for CA2

- For n CSTRs in series

- n tank in series
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3. Design of CSTRs V

Apr/04 METU-NCC 5

o CSTR in series 2
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3. Design of CSTRs VI

Apr/04 METU-NCC 6

o CSTR in parallel 1

- One large reactor of volume V

o 2nd order reactor in a CSTR

- Dividing by v0

- For conversion X
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4. Tubular Reactors I

Apr/04 METU-NCC 7

o Design equation

- Differential form

• Q or ∆P

- Integral form

• no Q or ∆P

o 2nd order reactor in a PFR 1
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4. Tubular Reactors II

Apr/04 METU-NCC 8

o 2nd order reactor in a PFR 2

- Liquid phase reaction (v = v0)

• combining MB & rate law

• conc. of A, 

• combining & integrating

• solving for X 
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4. Tubular Reactors III

Apr/04 METU-NCC 9

o 2nd order reactor in a PFR 3

- Gas phase reaction (T = T0, P = P0)

• conc. of A, 

• combining
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4. Tubular Reactors IV

Apr/04 METU-NCC 10

o 2nd order reactor in a PFR 4

- Conversion as a function of distance down the 

reactor



4. Tubular Reactors V

Apr/04 METU-NCC 11

o 2nd order reactor in a PFR 5

- Three types of reactions

• ε = 0 (δ = 0) ⇒ v = v0

• ε < 0 (δ < 0) 

⇒ gas molecule spends 

longer time 

☞ higher conv.

• ε > 0 (δ > 0) 

⇒ gas molecule spends 

shorter time 

☞ lower conv., p 171 Ex 4-3



4. Tubular Reactors VI

Apr/04 METU-NCC 12

o 2nd order reactor in a PFR 6

- Production of ethylene using PFR
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5. Pressure Drop in Reactors I

Apr/04 METU-NCC 13

o Pressure Drop and the Rate Law

- In PBR in terms of catalyst weight

• rate equation, 

• stoichiometry

• isothermal 
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5. Pressure Drop in Reactors II

Apr/04 METU-NCC 14

o Flow through a Packed Bed 1

- Ergun equation

where P = pressure
φ = porosity = void fraction
gc = conversion factor relating gravity
Dp = diameter of particle in the bed
μ = viscosity of gas passing through the bed
z = length down the packed bed of pipe
u = superficial velocity
ρ = gas density
G = ρu = superficial mass velocity
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5. Pressure Drop in Reactors III

Apr/04 METU-NCC 15

o Flow through a Packed Bed 2

- Pressure drop in packed bed 1

where β0 is a constant depending on the properties 

of the packed bed and the entrance conditions
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5. Pressure Drop in Reactors IV

Apr/04 METU-NCC 16

o Flow through a Packed Bed 3

- Pressure drop in packed bed 2

• interested in more in catalyst weight rather than the 

distance z

• catalyst weight, W = zAcρb = zAc(1-φ)ρc

      
catalyst solid

ofDensity   

solids    

of Volume

catalyst  

ofWeight 

ρ         φ)-(1             W   cc





 zA

00

0

c

0

φ)ρ1(

β

T

T

c F

F

T

T

P

P

AdW

dP
















5. Pressure Drop in Reactors V

Apr/04 METU-NCC 17

o Flow through a Packed Bed 4

- Pressure drop in packed bed 3

• let 

• then

where y = P/P0
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5. Pressure Drop in Reactors VI

Apr/04 METU-NCC 18

o Flow through a Packed Bed 5

- Pressure drop in packed bed 4

• for single reactions

• isothermal operation

• notice that
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5. Pressure Drop in Reactors VII

Apr/04 METU-NCC 19

o Flow through a Packed Bed 6

- Pressure drop in packed bed 5 – effect of P drop

P 187 

Ex 4-5



5. Pressure Drop in Reactors VIII

Apr/04 METU-NCC 20

o Flow through a Packed Bed 7

- Finding optimum particle diameter
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6. Synthesizing for Design of a Chemical Plant I



Apr/04 METU-NCC 22

o Manufacturing of ethylene glycol

- Economy

Profit EG cost

year

lb
102

lb

$0.38 m8

m



Ethane cost

year

lb
10

lb

$0.04 m8

m

4

SA cost

year

lb
102.26

lb

$0.43 m6

m



Operating 

cost

$8,000,000

= -

- -

= $76,000,000 - $16,000,000 - $54,000 - $8,000,000

= $52 million

6. Synthesizing for Design of a Chemical Plant II


