7. Reaction Mechanisms, Pathways, Bioreactions and Bioreactors

- Active Intermediates and Free Radicals
 - Pseudo-steady-state-hypothesis
 - Reaction pathway
- o Enzymes
 - Michealis-Menten enzyme kinetics
 - Enzyme inhibition
- Bioreactors
- Pharmacokinetics
- Polymerization

2. Enzymes XVIII

Types of Enzyme Inhibition 10

- Substrate inhibition
- most substrate acts as an inhibitor

$$S + E \bullet S \longrightarrow S \bullet E \bullet S$$
 (Inactive)

- incompetitive reaction, $\textbf{I} \rightarrow \textbf{S}$

$$-r_{S} = \frac{V_{\max}S}{K_{M} + S + \frac{S^{2}}{K_{I}}}$$

at low conc. of substrate

$$K_M >> (S + \frac{S^2}{K_I})$$

$$-r_{S} \sim \frac{V_{\text{max}}S}{K_{M}}$$

2. Enzymes XIX

o Types of Enzyme Inhibition 11

- Substrate inhibition 2
- at high conc. of substrate

3. Bioreactors I

○ Bioreactor

- A reactor that sustains and supports life for cells and tissue cultures
- Cell metabolism
- transformation of chemical energy
- construction, breakdown, digestion of cellular components
- Microbial growth
- enzyme rxns are involved during growth
- Monod equation 🖙 similar to MM equation
- **※ Bioproduct market USD 16 billion**

3. Bioreactors II

Bioconversion

- Advantages
- mild reaction conditions
- high yields
- enzyme acts as stereo-specific catalyst
- Bacteria as living chemical factory
- recombinant DNA

nutrient +
$$\bullet$$
 + Products
Nutrient $\xrightarrow{\text{cells}}$ + product

3. Bioreactors III

- Cell growth
 - I. Lag phase
 - adjusting new environment
 - **II. Exponential growth phase**
 - dividing at the maximum rate
 - **III. Stationary phase**
 - cells reach minimum biological space
 - useful products
 - **IV. Death phase**

- **3. Bioreactors IV**
- Rate Laws
 - Cells + Substrate → More cells + Product
 - Monod equation

$$r_g = \mu C_C$$

$$\mu = \mu_{\max} \frac{C_S}{K_S + C_S}$$

$$r_g = \frac{\mu_{\max} C_S C_C}{K_S + C_S}$$

- In general
$$r_g = k_{OBS} \left(\frac{\mu_{max} C_S}{K_S + C_S} \right) C_C$$

$$k_{OBS} = \left(1 - \frac{C_P}{C_P^*}\right)^n CP^* = Where Product concentration at which all metabolism ceases.$$

2011 Spring

3. Bioreactors V

o Stoichiometry

- Yield coefficients

$$Y_{C/S} = \frac{\text{Mass of new cells formed}}{\text{Mass of substrate consumed}} = -\frac{\Delta C_C}{\Delta C_S}$$

with
$$Y_{C/S} = 1/Y_{S/C}$$

$$Y_{P/S} = \frac{\text{Mass of product formed}}{\text{Mass of substrate consumed}} = -\frac{\Delta C_P}{\Delta C_S}$$

- Maintenance

3. Bioreactors VI

o Stoichiometry 2

- Rate of substrate consumption for maintenance

 $r_{sm} = mC_c$

- When maintenance can be neglected

$$C_c = Y_{c/s} [C_{s0} - C_s]$$

- Total substrate consumed is to form new cells (C) and product (P)

$$S \xrightarrow{cells} Y'_{c/s}C + Y'_{p/s}P$$

3. Bioreactors VII

- o Stoichiometry 3
 - Substrate utilization

- Substrate balance
- during the growth phase \Rightarrow lumped into $Y_{s/c}$

$$-r_s = Y_{s/c}r_g + mC_c$$

3. Bioreactors VIII

- o Stoichiometry 4
 - Substrate balance 2
 - corresponding rate of product formation

 $r_p = Y_{p/c} r_g$

- for stationary phase, nutrient for growth virtually exhausted
- a different nutrient is used for cell maintenance
- \Rightarrow produce the desired product

$$r_p = \frac{k_p C_{sn} C_c}{K_{sn} + C_{sn}}$$

3. Bioreactors IX

- o Stoichiometry 5
 - Substrate balance 3
 - net rate of secondary nutrient consumption

$$-r_{sn} = mC_c + Y_{sn/p}r_p$$
$$= mC_c + \frac{Y_{sn/p}k_pC_{sn}C_c}{K_{sn} + C_{sn}}$$

 the desired product can be obtained with no cell growth stage ⇒ concern about the change of secondary nutrient

$$C_p = Y_{p/s} [C_{sn0} - C_{sn}]$$

3. Bioreactors X

Stoichiometry 6

- Two limiting situations for substrate consumption to cell growth and product formation
- product formed only during growth phase
- product formed only during stationary phase

Luedeking-Piret equation

$$q_p = \alpha \mu_g + \beta \longrightarrow \text{non-growth}$$

growth

with
$$r_p = q_p C_c$$

3. Bioreactors XI

- Mass Balance
 - Counting the number of living cells

- Counting the mass of living cells

3. Bioreactors XII

Mass Balance

- Batch operation

• cell
$$V \frac{dC_c}{dt} = r_g V - r_d V$$
 $\frac{dC_c}{dt} = r_g - r_d$

• substrate $V \frac{dC_c}{dt} = r_s V = Y_{s/c} (-r_g) V - mC_c V$

$$\frac{dC_c}{dt} = Y_{s/c}(-r_g) - mC_c$$

in stationary phase, no growth

$$V\frac{dC_s}{dt} = -mC_cV + Y_{s/p}(-r_p)V$$

3. Bioreactors XIII

- o Mass Balance 2
 - Batch operation
 - product

$$V\frac{dC_p}{dt} = r_p V = Y_{p/s}(-r_s)V$$

○ Chemostats

- **3. Bioreactors XV**
- **O Design Equations**
 - Dilution rate $D = \frac{v_0}{V}$
 - Mass balance (CSTR)

- Monod equation

$$r_g = \mu C_c = \frac{\mu_{\max} C_s C_c}{K_s + C_s}$$

3. Bioreactors XVI

Design Equations 2

- Steady state operation

$$DC_c = r_g - r_d$$
$$D(C_{s0} - C_s) = -r_s$$

- Neglecting the death rate $F_c = C_c v_0 = r_g V = \mu C_c V$

- Divide by $C_c V$ $D = \mu$

specific growth rate of the cell can be controlled by varying D

3. Bioreactors XVII

- **Design Equations 3**
 - Steady state operation 2
 - solving for steady state substrate conc.

$$C_c = \frac{DK_s}{\mu_{\max} - D}$$

• single nutrient limiting, substrate consumed to cell growth only, cell maintenance neglected

$$-r_{s} = r_{g}Y_{s/c}$$
 $C_{c} = Y_{c/s}(C_{s0} - C_{s})$

$$C_{c} = Y_{c/s} \left[C_{s0} - \frac{DK_{s}}{\mu_{max} - D} \right]$$

3. Bioreactors XVIII

- Wash out
 - Neglect death rate and cell maintenance
 - Steady state

$$\mathbf{C}_{\mathbf{C}} = \mathbf{Y}_{\mathbf{C}/S} \begin{bmatrix} \mathbf{C}_{SO} - \mathbf{C}_{S} \end{bmatrix} = \mathbf{Y}_{\mathbf{C}/S} \begin{bmatrix} \mathbf{C}_{SO} - \frac{\mathbf{D} \mathbf{K}_{S}}{\mu_{\text{max}} - \mathbf{D}} \end{bmatrix}$$

3. Bioreactors XIX

$$\circ \text{ Wash out 2} \qquad D_{W} = \frac{\mu_{max}C_{SO}}{K_{S} + C_{SO}}$$

- Maximum production rate
- dividing by the reactor volume, V, which is constant production rate = $\dot{m}_c = v_0 C_C$

$$\frac{\dot{m}}{V} = DC_{C}$$

• substituting for $\mathbf{C}_{\mathbf{C}}$

$$DC_{C} = DY_{CIS} \left(C_{SO} - \frac{DK_{s}}{\mu_{max} - D} \right)$$

