8. Steady-State Nonisothermal Reactor Design

- o **Energy Balance**
	- **- Overview of User Friendly Energy Balance Equations**
	- **-** Manipulating the Energy Balance, ΔH_{Rx}
- o **Reversible Reactions**
- o **Adiabatic Reactions**
- o **Applications of the PFR/PBR User Friendly Energy Balance Equations**
- o **Interstage Cooling/Heating**
- o **Evaluating the Heat Exchanger Term**
- o **Multiple Steady States**
- o **Multiple Reactions with Heat Effects**

6. CSTR with Heat Effect I

o **Apply general energy balance to the CSTR at st st**

$$
\dot{Q} - \dot{W}_s - F_{A0} \sum_{i=1}^n \Theta_i C_{Pi} \Big[T - T_{i0} \Big] - \Delta H_{Rx}(T) F_{A0} X = 0
$$

6. CSTR with Heat Effect II

o **Algorithm for CSTR design 1**

6. CSTR with Heat Effect III

o **Algorithm for CSTR design 2**

6. CSTR with Heat Effect IV

o **Algorithm for CSTR design 3**

6. CSTR with Heat Effect V

o **Given X** ☞ **Find T and V**

- ☜ **Linear progression of calc T** ⇒ **calc k** ⇒ **calc K^C** ⇒ $\text{calc} -r_{\text{A}} \Rightarrow \text{calc}$ V
- **- Second order reaction in CSTR, adiabatically, acidcatalyzed irreversible liquid-phase reaction at 300 K**

 $\Delta H_{\text{Py}}(300 \text{ K}) = -3300 \text{ cal/mol} \cdot {}^{\circ}\text{C}$ $C_{P_A} = 15 \text{ cal/mol} \cdot {}^{\circ}\text{C}$ $C_{P_{n}} = 15 \text{ cal/mol} \cdot {}^{\circ}\text{C}$ $C_{P_e} = 18 \text{ cal/mol} \cdot {}^{\circ}\text{C}$ $k(300 K) = 0.0005 dm³/mol·min$ $E = 15,000 \text{ cal/mol}$

6. CSTR with Heat Effect VI

o **Given X** ☞ **Find T and V 2**

(a) What CSTR reactor volume is necessary to achieve 80% conversion?

- **1. CSTR Design Equation:** $V = \frac{F_{A0}X}{\sqrt{2}}$ $-\mathsf{r}_{\scriptscriptstyle\Delta}$
- **2. Rate Law:**
- **3. Stoichiometry:** $C_A = C_{A0}(1-X)$
-

 $-r_{\Delta} = kC_{\Delta}^{2}$

4. Combine:

$$
V = \frac{\upsilon_0 X}{\kappa C_{A0} (1 - X)^2}
$$

$$
V = \frac{F_{A0}X}{kC_A^2} = \frac{C_{A0}v_0X}{k[C_{A0}(1-X)]^2}
$$

6. CSTR with Heat Effect VII

o **Given X** ☞ **Find T and V 3**

5. Determine T: adiabatic energy balance

$$
T = \frac{X[-\Delta H_{Rx}(T_R)] + \sum \Theta_i \widetilde{C}_{P_i} T_0 + X \Delta \hat{C}_{P} T_R}{\sum \Theta_i \widetilde{C}_{P_i} + X \Delta \hat{C}_{P}}
$$

$$
\Delta \hat{C}_{P} = C_{P_B} - C_{P_A} = (15 - 15) cal/mol \cdot {}^{\circ}C = 0
$$

$$
T = \frac{X[-\Delta H_{Rx}(T_R)] + \sum \Theta_i \widetilde{C}_{P_i} T_0}{\sum \Theta_i \widetilde{C}_{P_i}}
$$

$$
T = T_0 + \frac{X[-\Delta H_{Rx}(T_R)]}{\sum \Theta_i \widetilde{C}_{P_i}}
$$

6. CSTR with Heat Effect VII

o **Given X** ☞ **Find T and V 3**

- **5. Determine T: adiabatic energy balance**
- **- Substituting for known values and solving for T**

$$
T = 300 K + \frac{(0.8) [-(-3300 \text{ cal/mol})]}{[(15+18)(\text{ cal/mol} \cdot {}^{\circ}\text{C})]} \qquad T = 380 K
$$

6. Solve for the Rate Constant (k) at T = 380 K:

$$
k(T) = k(T_1) exp\left[\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T}\right)\right]
$$

\nk(380 K) = $\left(0.0005 \frac{dm^3}{mol \cdot min}\right) exp\left[\frac{\left(15,000 \frac{cal}{mol}\right)}{\left(1.987 \frac{cal}{mol \cdot K}\right)} \left(\frac{1}{300K} - \frac{1}{380K}\right)\right]$
\nk = 0.1 dm³/mol \cdot min

6. CSTR with Heat Effect VIII

o **Given X** ☞ **Find T and V 4 7. Calculate the CSTR Reactor Volume (V):**

6. CSTR with Heat Effect IX

o **Given V** ☞ **Find X and T**

- **(b) What conversion can be achieved in a 1000 dm ³ CSTR? What is the new exit temperature?**
- **1. CSTR Design Equation:** $V = \frac{F_{A0}X}{4}$ $-\mathsf{r}_{\scriptscriptstyle\Delta}$
- $-r_{\rm A}$ = kC_A² **2. Rate Law:**
- **3. Stoichiometry:**

$$
\mathbf{C}_{\mathsf{A}} = \mathbf{C}_{\mathsf{A}0} (1 - \mathbf{X})
$$

4. Combine:

$$
V = \frac{v_0 X}{kC_{A0}(1-X)^2}
$$

$$
V = \frac{F_{A0}X}{kC_A^2} = \frac{C_{A0}v_0X}{k[C_{A0}(1-X)]^2}
$$

6. CSTR with Heat Effect X

o **Given V** ☞ **Find X and T 2**

More convenient to work with this equation in terms of space time, rather than volume

$$
\tau = \frac{1}{kC_{A0}} \frac{X}{(1-X)^2}
$$

5. Solve the Energy Balance for X_{FB} as a function of T:

$$
\begin{aligned} \mathbf{X}_{EB} &= \frac{\sum \Theta_i \mathbf{\widetilde{C}}_{P_i} \big(\mathbf{T} - \mathbf{T}_0 \big)}{-\Delta H_{Rx} \big(\mathbf{T}_R \big)} \\ \mathbf{X}_{EB} &= \frac{\big(\mathbf{C}_{P_A} + \mathbf{C}_{P_S} \big) \big(\mathbf{T} - \mathbf{T}_0 \big)}{-\Delta H_{Rx} \big(\mathbf{T}_R \big)} \end{aligned}
$$

6. CSTR with Heat Effect XI

o **Given V** ☞ **Find X and T 3 6. Solve the Mole Balance for X _{MB} as a function of T:**

$$
\tau k C_{A0} = \frac{X}{(1 - X)^2}
$$

$$
(2 \tau k C_{A0} + 1) - \sqrt{4 \tau k C_{A0}}
$$

$$
X_{MB} = \frac{(2\tau KC_{A0} + 1) - \sqrt{4\tau KC_{A0} + 1}}{2(\tau KC_{A0})}
$$

Da =
$$
\tau kC_{A0}
$$

\nX_{MB} = $\frac{(2Da + 1) - \sqrt{4Da + 1}}{2(Da)}$

6. CSTR with Heat Effect XII

o **Given V** ☞ **Find X and T 4 7. Plot X** $_{EB}$ and X $_{MB}$:

6. CSTR with Heat Effect XIII

o **Given V** ☞ **Find X and T 5**

(c) How would your answers to part (b) change, if the entering temperature of the feed were 280 K?

6. CSTR with Heat Effect XIV

o **Given T** ☞ **Find X and V**

- ☜ **Linear progression of calc k** ⇒ **calc K^C** ⇒ **calc X** ⇒ $\text{calc} -r_{\text{A}} \Rightarrow \text{calc V}$
- **- First order reaction in CSTR, adiabatically, acidcatalyzed irreversible liquid-phase reaction**
- \bullet **Also given** k , E , $C_{P\text{A}}$ = $C_{P\text{B}}$, ΔH_{Rx} , $C_{\text{A}\text{o}}$, and v_{o}

6. CSTR with Heat Effect XV

o **Given T** ☞ **Find X and V 2**

Mode Balance:
$$
V = \frac{F_{A0}X}{-r_A}
$$

\nRate Law: $-r_A = kC_A$

\n $k = Ae^{-E/RT}$

\nStoichiometry: $C_A = C_{A0}(1 - X)$

\n $C_V X$

Combine:
$$
V = \frac{C_{A0}V_a A}{kC_{A0} (1-X)} \Rightarrow \tau = \frac{1}{k} \frac{A}{(1-X)}
$$

Energy Balance :
$$
T = T_o - \frac{(-\Delta H_{rx})X}{C_{pa}}
$$

 \mathbf{v}

6. CSTR with Heat Effect XVI

o **Given T** ☞ **Find X and V 3**

Given T
\n1) Calculate
$$
X = \frac{C_{pA}(T-T_o)}{\Delta H_{rx}}
$$

\n2) Calculate $k = Ae^{-E/RT} = k_1(T_1)exp\left[\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T}\right)\right]$
\n3) Calculate $\tau = \frac{1}{k} \frac{X}{(1-X)}$
\n4) Calculate $V = v_o \tau$

7. Multiple Steady States (MSS)

o **CSTR with Heat Effects**

$$
\dot{Q} - \dot{W}_s - F_{A0} \sum_{i=1}^n \Theta_i C_{P_i} (T - T_{i0}) - [\Delta H_{\text{Rx}}^{\circ}(T_R) + \Delta C_P (T - T_R)] F_{A0} X = 0
$$

- For very large coolant rate, T^a is constant

$$
\dot{Q}=UA(T_a-T)
$$

$$
-\Delta C_{\mathbf{P}} = \mathbf{0} \quad \frac{UA}{F_{A0}}(T_a - T) - \Sigma \Theta_i C_p (T - T_0) - \Delta H_{\text{Rx}}^{\circ} X = 0
$$

$$
T=\frac{F_{A0}X\bigl(-\Delta H_{Rx}\bigr)+UA\ T_a+F_{A0}C_{P_A}T_0}{UA+F_{A0}C_{P_A}}
$$

7. Multiple Steady States II

o **CSTR with Heat Effects 2**

$$
X = \frac{UA}{F_{A0}}(T - T_a) + \Sigma \Theta_i C_{p_i}(T - T_0)
$$

\n- In general
$$
[X(-\Delta H_{Rx})] - [\Sigma \Theta_i C_{P_i}(T - T_0) + \frac{UA}{F_{A0}}(T - T_A)] = 0
$$

\n
$$
[Heat \text{ General} \begin{bmatrix} H_{ext} & H_{ext} & H_{ext} \\ H_{ext} & H_{ext} & H_{ext} \end{bmatrix} - \begin{bmatrix} H_{ext} & H_{ext} & H_{ext} \\ H_{ext} & H_{ext} & H_{ext} \end{bmatrix} = 0
$$

\n
$$
C_{P_0} = \Sigma \Theta_i C_{P_i}
$$

\n
$$
X(AH) \rightarrow G_{R_0} \begin{bmatrix} H_{ext} & H_{ext} & H_{ext} \end{bmatrix}
$$

$$
X(-\Delta H_{Rx}) = C_{P_0} \left[T - T_0 + \frac{T_0 - T_0}{F_{A0}C_{P_0}} (T - T_a) \right]
$$

\n_{May/12} 2011 Spring 20

7. Multiple Steady States III

o **CSTR with Heat Effects 3**

Let
$$
\kappa = \frac{UA}{F_{A0}C_{P_0}}
$$

\n $X(-\Delta H_{Rx}) = C_{P_0}(T + \kappa T - T_0 - \kappa T_a)$
\n $= C_{P_0}(1 + \kappa) \left(T - \frac{T_0 + \kappa T_a}{1 + \kappa} \right)$
\n $= C_{P_0}(1 + \kappa)(T - T_C)$
\n $T_C = \frac{T_0 + \kappa T_a}{1 + \kappa}$

$$
V=\frac{F_{A0}X}{-r_A(X,T)}
$$

7. Multiple Steady States IV

o **CSTR with Heat Effects 4**

$$
-X\Delta H_{\text{Rx}}^{\circ} = C_{P_0}(1+\kappa)(T-T_c)
$$

 $C_{P^{}_{0}}($

 $X =$

7. Multiple Steady States V

o **Heat of generation**

- First-order liquid-phase reaction

7. Multiple Steady States VI

o **Heat of generation**

※ **Self Test**

o **MSS for an Endothermic Reaction**

- Can there be multiple steady states (MSS) for a irreversible first order endothermic reaction?

Sol)

 $G(T) = (X)(-\Delta H_{Rx})$

- For an endothermic reaction H_{RX} is positive, (e.g., H_{RX} = +100 kJ/mole).

$$
G(T) = -100 \quad X
$$

$$
X = \frac{\tau k}{1 + \tau k} = \frac{\tau A e^{-E/RT}}{1 + \tau A e^{-E/RT}}
$$

o **MSS for an Endothermic Reaction 2**

※ **Self Test 2**

o **MSS for an Endothermic Reaction 2**

