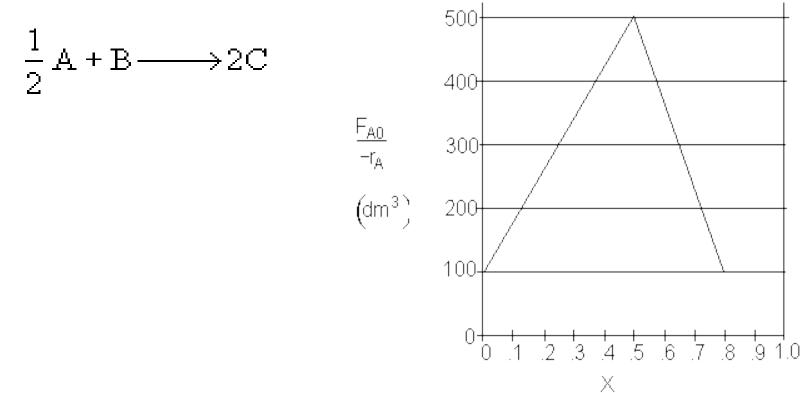

5. Reactors in Series XI

- o Example 3
 - Reactors in Series: CSTR-PFR-CSTR
 - Using either the data in Table 1, calculate the reactor volumes V₁, V₂, and V₃ for the CSTR/PFR/CSTR reactors in series sequence shown in Figure 1 along with the corresponding conversion.

5. Reactors in Series XII


- Example 3
 - **Table 1 Processed Data**

5. Reactors in Series XIII

o Example 4

- The adiabatic exothermic irreversible gas phase reaction is to be carried out in a flow reactor for a stoichiometric feed of A and B

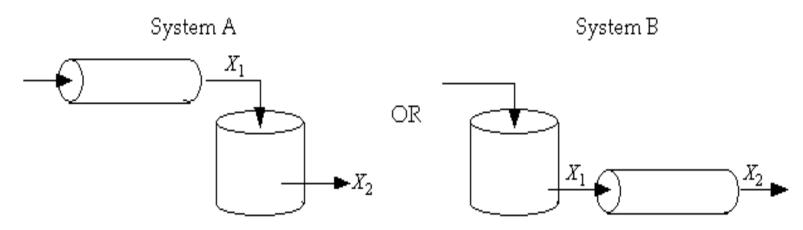
5. Reactors in Series XIV

o Example 4

a) What PFR volume is necessary to achieve 50% conversion?

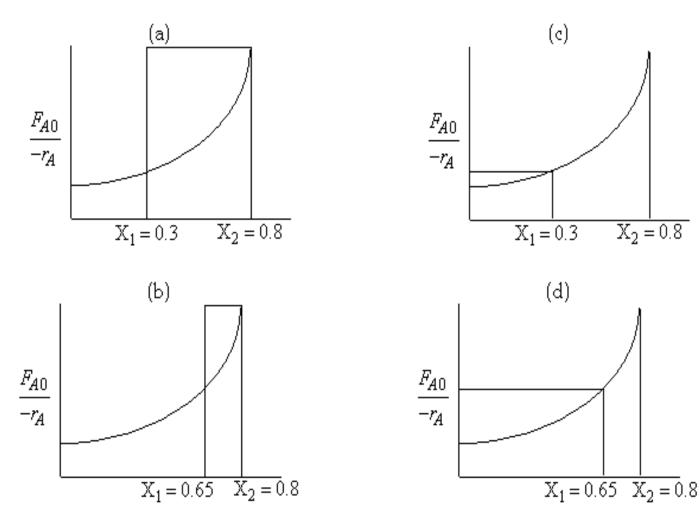
V₁ = _____

b) What CSTR volume is necessary to achieve 50% conversion?


V₁ = _____

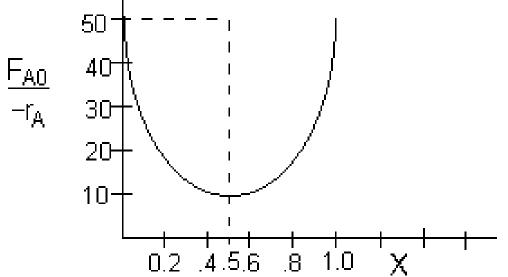
- c) What CSTR volume must be added to raise the conversion in Part (b) to 80%?
- V₂ = _____
- d) What PFR volume must be added to raise the conversion in Part (b) to 80%?

5. Reactors in Series XV


\circ Example 5

- a) Which system is most efficient for a intermediate conversion of (0.3)?
- b) Which system is most efficient for a intermediate conversion of (0.65)?
- c) Which system makes the best use of the reactor volume (i.e., least wasted volume)?

5. Reactors in Series XVI


o Example 5

5. Reactors in Series XV

o Example 6

- An adiabatic liquid phase exothermic reaction is to be carried out in a 25 dm³ CSTR. The entering molar flow rate of A times the reciprocal of the rate of reaction is shown below as a function of conversion. What is the conversion exiting the CSTR?

5. Reactors in Series XVI

- $_{\odot}$ Total volumes and reactor sequencing 1
 - The maximum conversion (minimum volume) in the sequencing reactor
 - ⇒ it depends
 - not only on the shape of the $(F_{A0}/-r_A)$ vs X plot
 - but also the reactor size
 - Calculating the reactor volume necessary to achieve a specified conversion
 - rxn rate depends on conversion, initial conc. of the reactants, T, and P
 - To get the right size of the flow reactor, only
 - -r_A = f(X) is needed

6. Some Further Definitions (p. 57)

\circ Space time(τ)

- Dividing the reactor volume by the volumetric flow rate entering the reactor

$$\tau \equiv \frac{V}{v_0}$$

- The time necessary to process one volume of reactor fluid at the entrance conditions
- the time it takes for the amount of fluid that takes up the entire volume of the reactor to either completely enter or completely exit the reactor
- holding time or mean residence time

	Reaction	Reactor	Temperature	Pressure atm	Space Time
(1)	$\mathrm{C_2H_6} \rightarrow \mathrm{C_2H_4} + \mathrm{H_2}$	PFR [†]	860°C	2	1 s
(2)	$CH_{3}CH_{2}OH + HCH_{3}COOH \rightarrow CH_{3}CH_{2}COOCH_{3} + H_{2}O$	CSTR	100°C	I	2 h
(3)	Catalytic cracking	PBR	490°C	20	$1 s < \tau < 400 s$
(4)	$C_6H_5CH_2CH_3 \rightarrow C_6H_5 CH = CH_2 + H_2$	PBR	600°C	1	0.2 s
(5)	$\rm CO + H_2O \rightarrow \rm CO_2 + H_2$	PBR	300°C	26	4.5 s
6)	$C_6H_6 + HNO_3 \rightarrow C_6H_5NO_2 + H_2O$	CSTR	50°C	1	20 min

Table 2-5 shows space times for six industrial reactions and reactors.

TABLE 2-5 SAMPLE INDUSTRIAL SPACE TIMES³

[†]The reactor is tubular but the flow may or may not be ideal plug flow.

6. Some Further Definitions II

- o Space velocity(SV)
 - Reciprocal of the space time

$$SV \equiv \frac{v_0}{V}$$
 $SV \equiv \frac{1}{\tau}$

- LHSV, liquid-hourly SV
- the entering volumetric flow rate is frequently measured as that of liquid feed rate at 60°F or 75°F, even though vapor or some higher T
- GHSV, gas-hourly SV
 - measured at STP

SHSV
$$\equiv \frac{v_0|_{\text{liquid}}}{V}_{2011 \text{ Spring}} \text{ GHSV } \equiv \frac{v_0|_{\text{STP}}}{V}$$